Recent advances in soft materials and system integration technologies have provided a unique opportunity to design various types of wearable flexible hybrid electronics (WFHE) for advanced human healthcare and human-machine interfaces. The hybrid integration of soft and biocompatible materials with miniaturized wireless wearable systems is undoubtedly an attractive prospect in the sense that the successful device performance requires high degrees of mechanical flexibility, sensing capability, and user-friendly simplicity. Here, the most up-to-date materials, sensors, and system-packaging technologies to develop advanced WFHE are provided. Details of mechanical, electrical, physicochemical, and biocompatible properties are discussed with integrated sensor applications in healthcare, energy, and environment. In addition, limitations of the current materials are discussed, as well as key challenges and the future direction of WFHE. Collectively, an all-inclusive review of the newly developed WFHE along with a summary of imperative requirements of material properties, sensor capabilities, electronics performance, and skin integrations is provided.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201901924 | DOI Listing |
ACS Nano
December 2024
Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China.
As the keystones of molecular electronics, high-quality nanodielectric layers are challenging to assemble due to the strictest criteria for their reliability and uniformity over a large area. Here, we report a strained poly(4-vinylphenol) monolayer, ready to be stacked to form defect-free wafer-scale nanodielectrics. The thickness of the nanodielectrics can be precisely adjusted in integral multiples of the 1.
View Article and Find Full Text PDFJ Oral Implantol
December 2024
School of Dentistry, Section of Periodontics, University of California, Los Angeles, Los Angeles, California, United States.
Unlabelled: Peri-implantitis (PI) is an inflammatory disease that affects supportive tissues around dental implants, and its progression eventually leads to bone loss and implant failure. However, PI effects may be different based on the presence or absence of adjacent teeth.
Objective: To investigate the differences in bone loss and inflammation between implants placed adjacent to a tooth or edentulous area in a ligature-induced PI model.
Nat Comput Sci
December 2024
Department of Physics and Astronomy, Tufts University, Medford, MA, USA.
Soft materials underpin many domains of science and engineering, including soft robotics, structured fluids, and biological and particulate media. In response to applied mechanical, electromagnetic or chemical stimuli, such materials typically change shape, often dramatically. Predicting their structure is of great interest to facilitate design and mechanistic understanding, and can be cast as an optimization problem where a given energy function describing the physics of the material is minimized with respect to the shape of the domain and additional fields.
View Article and Find Full Text PDFJ Craniofac Surg
October 2024
Department of Pathology, Pathohistology and Medical Cytology, University Clinical Center of Serbia, Belgrade, Serbia.
Introduction: Sarcomas are relatively rare malignant tumors of mesenchymal origin, representing only about 1% of tumors in the head and neck region.
Materials And Methods: A retrospective study involved patients with sarcomas of the head and neck region who were diagnosed and treated over a 5-year period.
Results: Nine patients were included, 4 men and 5 women.
Int J Biol Macromol
December 2024
Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, Netherlands. Electronic address:
This study aimed to develop eco-friendly multifunctional nanocellulose (NC) hybrid films with tailored properties for versatile applications including packaging and photovoltaics. Hybrid films composed by cellulose nanocrystals (CNC) and carboxymethylated cellulose nanofibrils (CNF) were produced at various mass ratio (CNC - 100:0 to 0:100). Montmorillonite clay (MTM) was incorporated (50 % by mass) into the CNC:CNF films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!