A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automated Flow Cytometric MRD Assessment in Childhood Acute B- Lymphoblastic Leukemia Using Supervised Machine Learning. | LitMetric

Minimal residual disease (MRD) as measured by multiparameter flow cytometry (FCM) is an independent and strong prognostic factor in B-cell acute lymphoblastic leukemia (B-ALL). However, reliable flow cytometric detection of MRD strongly depends on operator skills and expert knowledge. Hence, an objective, automated tool for reliable FCM-MRD quantification, able to overcome the technical diversity and analytical subjectivity, would be most helpful. We developed a supervised machine learning approach using a combination of multiple Gaussian Mixture Models (GMM) as a parametric density model. The approach was used for finding the weights of a linear combination of multiple GMMs to represent new, "unseen" samples by an interpolation of stored samples. The experimental data set contained FCM-MRD data of 337 bone marrow samples collected at day 15 of induction therapy in three different laboratories from pediatric patients with B-ALL for which accurate, expert-set gates existed. We compared MRD quantification by our proposed GMM approach to operator assessments, its performance on data from different laboratories, as well as to other state-of-the-art automated read-out methods. Our proposed GMM-combination approach proved superior over support vector machines, deep neural networks, and a single GMM approach in terms of precision and average F -scores. A high correlation of expert operator-based and automated MRD assessment was achieved with reliable automated MRD quantification (F -scores >0.5 in more than 95% of samples) in the clinically relevant range. Although best performance was found, if test and training samples were from the same system (i.e., flow cytometer and staining panel; lowest median F -score 0.92), cross-system performance remained high with a median F -score above 0.85 in all settings. In conclusion, our proposed automated approach could potentially be used to assess FCM-MRD in B-ALL in an objective and standardized manner across different laboratories. © 2019 International Society for Advancement of Cytometry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cyto.a.23852DOI Listing

Publication Analysis

Top Keywords

flow cytometric
8
mrd assessment
8
acute lymphoblastic
8
lymphoblastic leukemia
8
supervised machine
8
machine learning
8
combination multiple
8
mrd quantification
8
gmm approach
8
automated mrd
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!