Graphene Hybrid Structures for Integrated and Flexible Optoelectronics.

Adv Mater

National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.

Published: July 2020

Graphene (Gr) has many unique properties including gapless band structure, ultrafast carrier dynamics, high carrier mobility, and flexibility, making it appealing for ultrafast, broadband, and flexible optoelectronics. To overcome its intrinsic limit of low absorption, hybrid structures are exploited to improve the device performance. Particularly, van der Waals heterostructures with different photosensitive materials and photonic structures are very effective for improving photodetection and modulation efficiency. With such hybrid structures, Gr hybrid photodetectors can operate from ultraviolet to terahertz, with significantly improved R (up to 10 A W ) and bandwidth (up to 128 GHz). Furthermore, integration of Gr with silicon (Si) complementary metal-oxide-semiconductor (CMOS) circuits, the human body, and soft tissues is successfully demonstrated, opening promising opportunities for wearable sensors and biomedical electronics. Here, the recent progress in using Gr hybrid structures toward high-performance photodetectors and integrated optoelectronic applications is reviewed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201902039DOI Listing

Publication Analysis

Top Keywords

hybrid structures
16
flexible optoelectronics
8
structures
5
graphene hybrid
4
structures integrated
4
integrated flexible
4
optoelectronics graphene
4
graphene unique
4
unique properties
4
properties including
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!