Novel capillary electrophoresis methods using CDs as chiral selectors were developed and validated for the chiral separation of lansoprazole and rabeprazole, two proton pump inhibitors. Fourteen different neutral and anionic CDs were screened at pH 4 and 7 in the preliminary analysis. Sulfobutyl-ether-β-CD with a degree of substitution of 6.5 and 10 at neutral pH proved to be the most suitable chiral selector for both compounds. Various dual CD systems were also compared, and the possible mechanisms of enantiomer separation were investigated. A dual selector system containing sulfobutyl-ether-β-CD degree of substitution 6.5 and native γ-CD proved to be the most adequate system for the separations. Method optimization was carried out using an experimental design approach, performing an initial fractional factorial screening design, followed by a central composite design to establish the optimal analytical conditions. The optimized methods (25 mM phosphate buffer, pH 7, 10 mM sulfobutyl-ether-β-CD/20 mM γ-CD, +20 kV voltage; 17°C temperature; 50 mbar/3 s injection, detection at 210 nm for lansoprazole; 25 mM phosphate buffer, pH 7, 15 mM sulfobutyl-ether-β-CD/30 mM γ-CD, +20 kV voltage; 18°C temperature; 50 mbar/3 s injection, detection at 210 nm for rabeprazole) provided baseline separation for lansoprazole (R = 2.91) and rabeprazole (R = 2.53) enantiomers with favorable migration order (in both cases the S-enantiomers migrates first). The optimized methods were validated according to current guidelines and proved to be reliable, linear, precise, and accurate for the determination of 0.15% distomer as chiral impurity in dexlansoprazole and dexrabeprazole samples.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201900107DOI Listing

Publication Analysis

Top Keywords

separation lansoprazole
12
chiral separation
8
lansoprazole rabeprazole
8
capillary electrophoresis
8
sulfobutyl-ether-β-cd degree
8
degree substitution
8
optimized methods
8
25 mm phosphate
8
phosphate buffer
8
γ-cd +20 kv
8

Similar Publications

A new, sensitive, and rapid isocratic reversed phase chromatographic method (RP-HPLC-UV) was developed for simultaneous separation of two newly co-formulated antiulcer mixtures; Amoxicillin, Vonoprazan and Clarithromycin [Mixture (I)], and Amoxicillin, Lansoprazole and Clarithromycin [Mixture (II)]. Analytical separation was performed using a Promosil C column and ultraviolet detection at 210 nm. The separation was achieved within only 8 min.

View Article and Find Full Text PDF

Green analytical approaches are employed for the determination of active pharmaceutical ingredients, in conjunction with their impurities. Smart chemometric spectrophotometric techniques, including orthogonal partial least square (OPLS), variable selection such as genetic algorithm (GA-OPLS), and interval selection (i-OPLS), were utilized. These chemometric models were implemented for assessing six proton-pump inhibitors Omeprazole, Esomeprazole, Lansoprazole, Pantoprazole, Rabeprazole, and Dexlansoprazole along with two selected official impurities, namely 4-Desmethoxy omeprazole impurity and Rabeprazole-impurity B.

View Article and Find Full Text PDF

Background: Persistent mortality in adults hospitalized due to acute COVID-19 justifies pursuit of disease mechanisms and potential therapies. The aim was to evaluate which virus and host response factors were associated with mortality risk among participants in Therapeutics for Inpatients with COVID-19 (TICO/ACTIV-3) trials.

Methods: A secondary analysis of 2625 adults hospitalized for acute SARS-CoV-2 infection randomized to 1 of 5 antiviral products or matched placebo in 114 centers on 4 continents.

View Article and Find Full Text PDF

A new enantioselective open-tubular capillary electrochromatography was developed employing poly(glycidyl methacrylate) nanoparticles/β-cyclodextrin covalent organic frameworks chemically immobilized on the inner wall of the capillary as a stationary phase. A pretreated silica-fused capillary reacted with 3-aminopropyl-trimethoxysilane followed by poly(glycidyl methacrylate) nanoparticles and β-cyclodextrin covalent organic frameworks through a ring-opening reaction. The resulting coating layer on the capillary was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy.

View Article and Find Full Text PDF

The efficacies and toxicities of chiral drug enantiomers are often dissimilar, necessitating chiral recognition methods. Herein, a polylysine-phenylalanine complex framework was used to prepare molecularly imprinted polymers (MIPs) as sensors with enhanced specific recognition capabilities for levo-lansoprazole. The properties of the MIP sensor were investigated using Fourier-transform infrared spectroscopy and electrochemical methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!