A semiconductor nanowire with strong spin-orbit coupling in proximity to a superconductor is predicted to display Majorana edge states emerging under a properly oriented magnetic field. The experimental investigation of these exotic states requires assessing the one-dimensional (1D) character of the nanowire and understanding the superconducting proximity effect in the presence of a magnetic field. Here, we explore the quasi-ballistic 1D transport regime of an InAs nanowire with Ta contacts. Fine-tuned by means of local gates, the observed plateaus of approximately quantized conductance hide the presence of a localized electron, giving rise to a lurking Coulomb blockade effect and Kondo physics. When Ta becomes superconducting, this local charge causes an unusual, reentrant magnetic field dependence of the supercurrent, which we ascribe to a 0 - π transition. Our results underline the relevant role of unintentional charge localization in the few-channel regime where helical subbands and Majorana quasi-particles are expected to arise.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611689PMC
http://dx.doi.org/10.1126/sciadv.aav1235DOI Listing

Publication Analysis

Top Keywords

magnetic field
12
charge localization
8
inas nanowire
8
localization reentrant
4
reentrant superconductivity
4
superconductivity quasi-ballistic
4
quasi-ballistic inas
4
nanowire
4
nanowire coupled
4
coupled superconductors
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!