Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Endoscopic imaging is the main method for detecting gastrointestinal diseases, which adversely affect human health. White light endoscopy (WLE) was the first method used for endoscopic examination and is still the preliminary step in the detection of gastrointestinal diseases during clinical examination. However, it cannot accurately diagnose gastrointestinal diseases owing to its poor correlation with histopathological diagnosis. In recent years, many advanced endoscopic methods have emerged to improve the detection accuracy by endoscopy. Chromoendoscopy (CE) enhances the contrast between normal and diseased tissues using biocompatible dye agents. Narrow band imaging (NBI) can improve the contrast between capillaries and submucosal vessels by changing the light source acting on the tissue using special filters to realize the visualization of the vascular structure. Flexible spectral imaging color enhancement (FICE) technique uses the reflectance spectrum estimation technique to obtain individual spectral images and reconstructs an enhanced image of the mucosal surface using three selected spectral images. The i-Scan technology takes advantage of the different reflective properties of normal and diseased tissues to obtain images, and enhances image contrast through post-processing algorithms. These abovementioned methods can be used to detect gastrointestinal diseases by observing the macroscopic structure of the digestive tract mucosa, but the ability of early cancer detection is limited with low resolution. However, based on the principle of confocal imaging, probe-based confocal laser endomicroscopy (pCLE) can enable cellular visualization with high-performance probes, which can present cellular morphology that is highly consistent with that shown by biopsy to provide the possibility of early detection of cancer. Other endoscopic imaging techniques including endoscopic optical coherence tomography (EOCT) and photoacoustic endoscopy (PAE), are also promising for diagnosing gastrointestinal diseases. This review focuses on these technologies and aims to provide an overview of different technologies and their clinical applicability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6571190 | PMC |
http://dx.doi.org/10.21037/qims.2019.05.16 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!