Circular RNA (circRNA) possesses great pre-clinical diagnostic and therapeutic potentials in multiple cancers. It has been reported playing roles in multiple malignant behaviors including proliferation, migration, metastasis and chemoresistance. However, the underlying correlation between circRNAs and cancer stem cells (CSCs) has not been reported yet. circZKSCAN1 level was detected in HCC tissue microarrays to clarify its prognostic values. Gain and loss function experiments were applied to investigate the role of circZKSCAN1 in HCC stemness. Bioinformatic analysis was used to predict the possible downstream RNA binding protein and further RNA immunoprecipitation sequencing was carried out to identify the RBP-regulated genes. The absence of circZKSCAN1 endowed several malignant properties including cancer stemness and tightly correlated with worse overall and recurrence-free survival rate in HCC. Bioinformatics analysis and RNA immunoprecipitation-sequencing (RIP-seq) results revealed that circZKSCAN1 exerted its inhibitive role by competitively binding FMRP, therefore, block the binding between FMRP and β-catenin-binding protein-cell cycle and apoptosis regulator 1 (CCAR1) mRNA, and subsequently restrain the transcriptional activity of Wnt signaling. In addition, RNA-splicing protein Quaking 5 was found downregulated in HCC tissues and responsible for the reduction of circZKSCAN1. Collectively, this study revealed the mechanisms underlying the regulatory role of circZKSCAN1 in HCC CSCs and identified the newly discovered Qki5-circZKSCAN1-FMRP-CCAR1-Wnt signaling axis as a potentially important therapeutic target for HCC treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6587157 | PMC |
http://dx.doi.org/10.7150/thno.32796 | DOI Listing |
Fragile X Syndrome (FXS) is characterized by intellectual impairment caused by CGG repeat expansion in the FMR1 gene. When repeats exceed 200, they induce DNA methylation of the promoter and the repeat region, resulting in transcriptional silencing of the FMR1 gene and the subsequent loss of FMRP protein. In the past decade or so, research has focused on the role of FMRP as an RNA-binding protein involved in translation inhibition in the brain in FXS model mice, particularly by slowing or stalling ribosome translocation on mRNA.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Biology, Kyung Hee University, Seoul, 02447, South Korea. Electronic address:
Fragile X Mental Retardation Protein 1 (FMR1) is a translational repressor crucial for regulating genes in the central nervous system. While a lack of FMR1 expression causes Fragile X Syndrome (FXS), its overexpression is implicated in various cancers, necessitating tight regulation of FMR1 protein levels for normal cell physiology. In this study, we report that FMR1 is upregulated in gastric cancer patients.
View Article and Find Full Text PDFJ Alzheimers Dis
December 2024
Department of Translational Neuroscience, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA.
Background: RNA-binding proteins (RBPs) modulate the synaptic proteome and are instrumental in maintaining synaptic homeostasis. Moreover, aberrant expression of an RBP in a disease state would have deleterious downstream effects on synaptic function. While many underlying mechanisms of synaptic dysfunction in Alzheimer's disease (AD) have been proposed, the contribution of RBPs has been relatively unexplored.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Neuroscience, Albert Einstein College of Medicine; New York, NY, U.S.A.
Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability and often accompanied with debilitating pathologies including seizures and hyperactivity. FXS arises from a trinucleotide repeat expansion in the 5' UTR of the gene that silences expression of the RNA-binding protein FMRP. Despite progress in understanding FMRP functions, the identification of effective therapeutic targets has lagged and at present there are no viable treatment options.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!