Conventional treatments of osteoarthritis (OA) reduce pain and the inflammatory response but do not repair the damaged cartilage. Xenogeneic peripheral blood-derived equine chondrogenically induced mesenchymal stem cells (ciMSC) could thus provide an interesting alternative. Six client-owned dogs with confirmed elbow OA were subjected to a baseline orthopedic examination, pressure plate analysis, general clinical examination, hematological analysis, synovial fluid sampling, and radiographic examination, and their owners completed two surveys. After all examinations, a 0.9% saline solution (placebo control product = CP) was administered intra-articularly. After 6 weeks, all examinations were repeated, owners again completed two surveys, and equine ciMSCs were administered in the same joint. After another 6 weeks, dogs were returned for a final follow-up. No serious adverse events or suspected adverse drug reactions were present during this study. No significant differences in blood analysis were noted between the CP and ciMSC treatment. Two adverse events were observed, both in the same dog, one after CP treatment and one after ciMSC treatment. The owner surveys revealed significantly less pain and lameness after ciMSC treatment compared to after CP treatment. There was no significant difference in the orthopedic examination parameters, the radiographic examination, synovial fluid sampling, and pressure plate analysis between CP treatment and ciMSC treatment. A single intra-articular administration of equine ciMSCs proved to be a well-tolerated treatment, which reduced lameness and pain according to the owner's evaluations compared to a placebo treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589207 | PMC |
http://dx.doi.org/10.1155/2019/4587594 | DOI Listing |
J Neuroinflammation
November 2023
Department of Pediatrics I, Neonatology and Experimental Perinatal Neurosciences, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany.
Background: Neonatal encephalopathy following hypoxia-ischemia (HI) is a leading cause of childhood death and morbidity. Hypothermia (HT), the only available but obligatory therapy is limited due to a short therapeutic window and limited efficacy. An adjuvant therapy overcoming limitations of HT is still missing.
View Article and Find Full Text PDFVet Surg
January 2024
School of Psychology, Swansea University, Swansea, UK.
Objective: To assess the efficacy of commercial intra-articular blood-derived allogeneic-induced mesenchymal stem cells (CIMSCs) to treat tarsometatarsal lameness in horses.
Study Design: This was a retrospective cohort study.
Animals: Records from 167 adult light breed horses with bilateral tarsometatarsal lameness.
Inflamm Regen
April 2023
Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, Centre for Translational and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany.
Background: Human mesenchymal stromal cell (MSC)-derived extracellular vesicles (EV) revealed neuroprotective potentials in various brain injury models, including neonatal encephalopathy caused by hypoxia-ischemia (HI). However, for clinical translation of an MSC-EV therapy, scaled manufacturing strategies are required, which is challenging with primary MSCs due to inter- and intra-donor heterogeneities. Therefore, we established a clonally expanded and immortalized human MSC line (ciMSC) and compared the neuroprotective potential of their EVs with EVs from primary MSCs in a murine model of HI-induced brain injury.
View Article and Find Full Text PDFStem Cell Res
April 2021
Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
The laryngotracheal cartilage is a cardinal framework for the maintenance of the airway for breathing, which occasionally requires reconstruction. Because hyaline cartilage has a poor intrinsic regenerative ability, various regenerative approaches have been attempted to regenerate laryngotracheal cartilage. The use of autologous mesenchymal stem cells (MSCs) for cartilage regeneration has been widely investigated.
View Article and Find Full Text PDFStem Cells Int
June 2019
Global Stem Cell Technology NV, 9940 Evergem, Belgium.
Conventional treatments of osteoarthritis (OA) reduce pain and the inflammatory response but do not repair the damaged cartilage. Xenogeneic peripheral blood-derived equine chondrogenically induced mesenchymal stem cells (ciMSC) could thus provide an interesting alternative. Six client-owned dogs with confirmed elbow OA were subjected to a baseline orthopedic examination, pressure plate analysis, general clinical examination, hematological analysis, synovial fluid sampling, and radiographic examination, and their owners completed two surveys.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!