A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Role of CDR1as in Proliferation and Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells. | LitMetric

The Role of CDR1as in Proliferation and Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells.

Stem Cells Int

Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.

Published: June 2019

Mesenchymal stem cells derived from human umbilical cord (hucMSCs) are considered a promising tool for regenerative medicine. circRNAs as newly discovered noncoding RNAs are involved in multiple biological processes. However, little has been known about the function of circRNAs in the proliferation and differentiation of hucMSCs. In this study, we selected several circRNAs expressed in MSCs from circBase and found that CDR1as expression level was markedly significant. We observed that, compared with that of uninduced hucMSCs, the CDR1as expression level of induced hucMSCs decreased with cell induction differentiation. By using siRNA to knock down CDR1as of hucMSCs, we discovered that proliferation was inhibited but the apoptosis increased. In addition, we found that the expression of stemness transcription factors (STFs) was downregulated after CDR1as knockdown and the adipogenesis and osteogenesis potential of hucMSCs was impaired. Our findings suggest that CDR1as takes a part in maintaining proliferation and differentiation of hucMSCs, providing clues for MSC modification and further for stem cell therapy and tissue regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594288PMC
http://dx.doi.org/10.1155/2019/2316834DOI Listing

Publication Analysis

Top Keywords

proliferation differentiation
12
human umbilical
8
mesenchymal stem
8
stem cells
8
differentiation hucmscs
8
cdr1as expression
8
expression level
8
hucmscs
7
cdr1as
5
role cdr1as
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!