During prophase I a meiosis-specific proteinaceous tripartite structure, the synaptonemal complex (SC), forms a scaffold to connect homologous chromosomes along their lengths. This process, called synapsis, is required in most organisms to promote recombination between homologs facilitating genetic variability and correct chromosome segregations during anaphase I. Recent studies in various organisms ranging from yeast to mammals identified several proteins involved in SC formation. However, the process of SC disassembly remains largely enigmatic. In this study we determined the structural changes during SC formation and disassembly in rye meiocytes containing accessory (B) chromosomes. The use of electron and super-resolution microscopy (3D-SIM) combined with immunohistochemistry and FISH allowed us to monitor the structural changes during prophase I. Visualization of the proteins ASY1, ZYP1, NSE4A, and HEI10 revealed an extensive SC remodeling during prophase I. The ultrastructural investigations of the dynamics of these four proteins showed that the SC disassembly is accompanied by the retraction of the lateral and axial elements from the central region of the SC. In addition, SC fragmentation and the formation of ball-like SC structures occur at late diakinesis. Moreover, we show that the SC composition of rye B chromosomes does not differ from that of the standard (A) chromosome complement. Our ultrastructural investigations indicate that the dynamic behavior of the studied proteins is involved in SC formation and synapsis. In addition, they fulfill also functions during desynapsis and chromosome condensation to realize proper recombination and homolog separation. We propose a model for the homologous chromosome behavior during prophase I based on the observed dynamics of ASY1, ZYP1, NSE4A, and HEI10.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596450PMC
http://dx.doi.org/10.3389/fpls.2019.00773DOI Listing

Publication Analysis

Top Keywords

synaptonemal complex
8
rye chromosomes
8
proteins involved
8
involved formation
8
structural changes
8
asy1 zyp1
8
zyp1 nse4a
8
nse4a hei10
8
ultrastructural investigations
8
ultrastructure dynamics
4

Similar Publications

Saccharomyces cerevisiae meiosis-specific Hop1, a structural constituent of the synaptonemal complex, also facilitates the formation of programmed DNA double-strand breaks and the pairing of homologous chromosomes. Here, we reveal a serendipitous discovery that Hop1 possesses robust DNA-independent ATPase activity, although it lacks recognizable sequence motifs required for ATP binding and hydrolysis. By leveraging molecular docking combined with molecular dynamics simulations and biochemical assays, we identified an ensemble of five amino acid residues in Hop1 that could potentially participate in ATP-binding and hydrolysis.

View Article and Find Full Text PDF

The synaptonemal complex (SC) is a zipper-like protein structure that aligns homologous chromosome pairs and regulates recombination during meiosis. Despite its conserved appearance and function, how synapsis occurs between chromosome axes remains elusive. Here, we demonstrate that Polo-like kinases (PLKs) phosphorylate a single conserved residue in the disordered C-terminal tails of two paralogous SC subunits, SYP-5 and SYP-6, to establish an electrostatic interface between the SC central region and chromosome axes in C.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on spermatogenesis in Todarodes pacificus, identifying four stages: spermatogonium, spermatocyte, spermatid, and mature sperm.
  • - Key characteristics of each stage are noted, including changes in karyoplasm and the development of structures such as mitochondria and proacrosomal vesicles during spermiogenesis.
  • - Mature sperm are detailed with a specific nucleus size, irregular karyoplasm shape, and distinct acrosome and flagellum structures essential for function.
View Article and Find Full Text PDF

Among eukaryotes, there are many examples of partial genome elimination during ontogenesis. A striking example of this phenomenon is the loss of entire avian chromosomes during meiosis, called a germline-restricted chromosome (GRC). The GRC is absent in somatic tissues but present in germ cells.

View Article and Find Full Text PDF

Immunohistochemical Characterization of Spermatogenesis in the Ascidian .

Cells

November 2024

Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda 415-0025, Shizuoka, Japan.

Animals show diverse processes of gametogenesis in the evolutionary pathway. Here, we characterized the spermatogenic cells in the testis of the marine invertebrate sperm differentiate in a non-cystic type of testis, comprising many follicles with various sizes and stages of spermatogenic cells. In the space among follicles, we observed free cells that were recognized by antibody against Müllerian inhibiting substance, a marker for vertebrate Sertoli cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!