Cultural attachment (CA) refers to processes that allow culture and its symbols to provide psychological security when facing threat. Epistemologically, whereas we currently have an adequate predictivist model of CA, it is necessary to prepare for a mechanistic approach that will not only predict, but also explain CA phenomena. Toward that direction, we here first examine the concepts and mechanisms that are the building blocks of both the prototypical maternal attachment as well as CA. Based on existing robust neuroscience models we associate these concepts and mechanisms with bona fide neurobiological functions to advance an integrative neurobiological model of CA. We further discuss the unresolved relationship of CA to other similar socio-cognitive concepts such as familiarity. Overall aim of the paper is to highlight the importance of integrating CA theory to computational approaches to culture and evolution (such as predictive processing computations explaining niche construction), as this will allow a dynamic interpretation of cultural processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596443PMC
http://dx.doi.org/10.3389/fnhum.2019.00209DOI Listing

Publication Analysis

Top Keywords

cultural attachment
8
concepts mechanisms
8
attachment behavior
4
behavior computational
4
computational neuroscience
4
neuroscience cultural
4
attachment refers
4
refers processes
4
processes allow
4
allow culture
4

Similar Publications

Purpose: A substantial proportion of children with high risk Neuroblastoma die within the first 5 years post-diagnosis despite the complex treatment applied. In the recent years, tumor environment has been revealed as key factor for cancer treatment efficacy. In this sense, non-tumorigenic Neural Crest progenitor cells from high risk patients, have been described as part of Neuroblastoma stroma, promoting tumor growth and contributing to mesenchyme formation.

View Article and Find Full Text PDF

Unlabelled: Ubiquitous in nature, biofilms provide stability in a fluctuating environment and provide protection from stressors. Biofilms formed in industrial processes are exceedingly problematic and costly. While biofilms of sulfate-reducing bacteria in the environment are often beneficial because of their capacity to remove toxic metals from water, in industrial pipelines, these biofilms cause a major economic impact due to their involvement in metal and concrete corrosion.

View Article and Find Full Text PDF

Dogs are increasingly recognized as valuable large animal models for understanding human intestinal diseases, as they naturally develop conditions similar to those in humans, such as Enterohemorrhagic , , inflammatory bowel disease, and ulcerative colitis. Given the similarity in gut flora between dogs and humans, canine intestinal models are ideal for translational research. However, conventional extracellular matrix-embedded organoids present challenges in accessing the lumen, which is critical for gut function.

View Article and Find Full Text PDF

Identifying new substances that could potentially be used for tumor therapy and the precise analysis of their spectrum of action requires models that are as similar as possible to the tumor present in the patient. Traditionally, two-dimensional (2D) cell cultures are used. However, these only resemble solid tumors to a limited extent.

View Article and Find Full Text PDF

Bacterial cellulose (BC) is a novel biocompatible polymeric biomaterial with a wide range of biomedical uses, like tissue engineering (TE) scaffolds, wound dressings, and drug delivery. Although BC lacks good cell adhesion due to limited functionality, its tunable surface chemistry still holds promise. Here, hydroxyapatite (HA) was incorporated into a citrate-modified BC (MBC) using the biomimetic synthesis in simulated body fluid (SBF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!