We have recently demonstrated that sciatic nerve injury increases the expression of spinal cytochrome P450c17, a key neurosteroidogenic enzyme, which plays a critical role in the development of peripheral neuropathic pain. However, the modulatory mechanisms responsible for the expression of spinal P450c17 have yet to be examined. Here we investigated the possible involvement of interleukin-1β (IL-1β) in altering P450c17 expression during the induction phase of neuropathic pain. Neuropathic pain was produced by chronic constriction injury (CCI) of the right sciatic nerve in mice and mechanical allodynia was evaluated in the hind paws using a von-Frey filament (0.16 g). Western blotting and immunohistochemistry were performed to assess the expression of spinal IL-1β, interleukin-1 receptor type 1 (IL-1R1), P450c17, and GFAP. Spinal IL-1β was significantly increased on day 1 post-surgery and its receptor, IL-1R1 was expressed in GFAP-positive astrocytes. Intrathecal administration of the recombinant interleukin-1 receptor antagonist (IL-1ra, 20 ng) on days 0 and 1 post-surgery enhanced GFAP expression on day 1 post-surgery and induced an early increase in P450c17 expression in astrocytes, but not in neurons. Administration of IL-1β (10 ng) on days 0 and 1 post-surgery blocked the enhancement of both spinal P450c17 and GFAP expression induced by IL-1ra (20 ng) administration. Intrathecal administration of IL-1ra (20 ng) on days 0 to 3 post-surgery also facilitated the CCI-induced development of mechanical allodynia, and this early developed pain was dose-dependently attenuated by the administration of the P450c17 inhibitor, ketoconazole (1, 3, or 10 nmol) or the astrocyte metabolic inhibitor, fluorocitrate (0.01, 0.03, or 0.1 nmol). These results demonstrate that early increases in spinal IL-1β temporally inhibit astrocyte P450c17 expression and astrocyte activation ultimately controlling the development of mechanical allodynia induced by peripheral nerve injury. These findings imply that spinal IL-1β plays an important role as an early, but transient, control mechanism in the development of peripheral neuropathic pain via the inhibition of astrocyte P450c17 expression and astrocyte activation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596369 | PMC |
http://dx.doi.org/10.3389/fnmol.2019.00153 | DOI Listing |
Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi
December 2023
Department of Amesthsiology Tianjin Medical University General Hospital, Tianjin 300052, China.
To investigate the reproductive toxicity of cadmium sulfide nanoparticles (Nano-CdS) with different particle sizes on male mice. In January 2019, 30 SPF grade male mice were randomly divided into a control group, an experimental group[CdS Ⅰ group (particle size approximately 5 nm), and a CdS Ⅱ group (particle size approximately 50 nm) ], with 10 mice in each group. The experimental group was orally gavaged with 100 mg/kg, once a day, while the control group was gavaged with an equal volume of physiological saline for 45 consecutive days.
View Article and Find Full Text PDFFront Pharmacol
December 2023
Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea.
Progesterone has been shown to have neuroprotective capabilities against a wide range of nervous system injuries, however there are negative clinical studies that have failed to demonstrate positive effects of progesterone therapy. Specifically, we looked into whether progesterone receptors or its metabolizing enzymes, cytochrome P450c17 and 5α-reductase, are involved in the effects of progesterone on neuropathic pain after chronic constriction injury (CCI) of the sciatic nerve in mice. Intrathecal progesterone administration during the induction phase of chronic pain enhanced mechanical allodynia development and spinal glial fibrillary acidic protein (GFAP) expression, and this enhancement was inhibited by administration of ketoconazole, a P450c17 inhibitor, but not finasteride, a 5α-reductase inhibitor.
View Article and Find Full Text PDFFood Chem Toxicol
November 2023
Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China. Electronic address:
Microplastics (MPs) are plastic pollutants with a diameter of less than 5 mm and microcystins (MCs) are natural toxins produced by cyanobacteria. In recent years, the pollution of MPs and MCs attracted widespread attention. However, our understanding about the toxic effects of co-exposure of MPs and MCs on male reproduction is limited.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
November 2023
College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China. Electronic address:
There is mounting evidence that vitamin D regulates female reproductive function critically, while little is known about the function of seasonally variable vitamin D in regulating ovarian steroidogenesis. This study examined the seasonal expressions of vitamin D receptor (VDR), vitamin D metabolic molecules (CYP2R1, CYP27B1, and CYP24A1), and steroidogenic enzymes (P450scc, 3β-HSD, P450c17, and P450arom) in the ovaries of the wild ground squirrels (Citellus dauricus Brandt) during the different breeding seasons. VDR, CYP2R1, CYP27B1, and CYP24A1 were shown to be localized in different types of ovarian cells in the wild ground squirrels during the breeding and non-breeding seasons.
View Article and Find Full Text PDFGen Comp Endocrinol
November 2023
Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China. Electronic address:
The development of the follicle is accompanied by steroidogenesis and secretion, the endoplasmic reticulum (ER) requires significant synthesis of relevant proteins to support changes in the follicular microenvironment. The aim of this study was to investigate whether seasonal changes in gonadotropins and ovarian steroid hormones in the wild ground squirrels induce endoplasmic reticulum stress (ERS) and changes in ERS-mediated unfolded protein response (UPR) signaling. There were significant seasonal differences in ovarian mass, with values higher in the breeding season and relatively low in the non-breeding season.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!