Max-imizing the Attenuation of Myc Using Small Molecules.

Trends Pharmacol Sci

Center for Drug Discovery (CDD), Baylor College of Medicine, Houston, TX 77030, USA; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA; Therapeutic Innovations Center (THINC@BCM), Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:

Published: September 2019

It has been a widely held notion within the biomedical research community that the reliable modulation of transcription factors with small molecules would represent a holy grail, given their role in directly potentiating oncogenic programs. Among the transcription factors that have been held in highest regard is Myc, since its dysregulation is among the most recurrent events in human cancer. Despite intense efforts, the ability to identify compounds that bind directly to Myc, resulting in its functional inhibition, have been met with only moderate success. However, a new approach reported by Struntz et al. (Cell Chem. Biol., 2019) focuses on a different strategy of discovering molecules that bind to Myc's obligate partner Max. Using a small-molecule microarray screen, they report the identification of KI-MS2-008, a compound that results in the stabilization of Max homodimers and the attenuation of Myc. KI-MS2-008 suppresses cancer cell grown both in vitro and within in vivo models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tips.2019.06.002DOI Listing

Publication Analysis

Top Keywords

attenuation myc
8
small molecules
8
transcription factors
8
max-imizing attenuation
4
myc
4
myc small
4
molecules held
4
held notion
4
notion biomedical
4
biomedical community
4

Similar Publications

Purpose: The study aimed to investigate the effect and mechanism of monotropein on renal cell carcinoma (RCC).

Methods: After monotropein and NF-κB receptor activator (RANKL) treatment, cell proliferation, invasion, and apoptosis were evaluated using CCK-8, Transwell, and flow cytometry. Primary macrophages co-cultured with monotropein-treated RCC cells were analyzed to evaluate macrophage polarization using qRT-PCR, western blot, and ELISA assays by detecting the expression of M2 markers (CD206, CD168) and cytokines (IL-10, TGF-β).

View Article and Find Full Text PDF

CHI-KAT8i5 suppresses ESCC tumor growth by inhibiting KAT8-mediated c-Myc stability.

Cell Rep

January 2025

Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000 Henan, China; China-US (Henan) Hormel Cancer Institute, No. 127, Zhengzhou 450000 Henan, China; The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou 450000 Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450000 Henan, China. Electronic address:

The integrated analysis of histone modifier enzymes in solid tumors, especially in esophageal squamous cell carcinoma (ESCC), is still inadequate. Here, we investigate the expression levels of histone modifier enzymes in ESCC tissues. Notably, KAT8 (lysine acetyltransferase 8) is identified as a prognostic and therapeutic biomarker in ESCC.

View Article and Find Full Text PDF

NPC1 controls TGFBR1 stability in a cholesterol transport-independent manner and promotes hepatocellular carcinoma progression.

Nat Commun

January 2025

State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China.

Niemann-Pick disease type C protein 1 (NPC1), classically associated with cholesterol transport and viral entry, has an emerging role in cancer biology. Here, we demonstrate that knockout of Npc1 in hepatocytes attenuates hepatocellular carcinoma (HCC) progression in both DEN (diethylnitrosamine)-CCl induced and MYC-driven HCC mouse models. Mechanistically, NPC1 significantly promotes HCC progression by modulating the TGF-β pathway, independent of its traditional role in cholesterol transport.

View Article and Find Full Text PDF

The role of the immune system in regulating tissue stem cells remains poorly understood, as does the relationship between immune-mediated tissue damage and regeneration. Graft vs. host disease (GVHD) occurring after allogeneic bone marrow transplantation (allo-BMT) involves immune-mediated damage to the intestinal epithelium and its stem cell compartment.

View Article and Find Full Text PDF

Objective: Long non-coding RNAs (lncRNAs) participate in the formation, progression, and metastasis of cancer. This study aimed to explore the roles of the lncRNA ST8SIA6 antisense RNA 1 (ST8SIA6-AS1) in tumorigenesis and elucidate the underlying molecular mechanism of its upregulation in hepatocellular carcinoma (HCC).

Material And Methods: A total of 56 in-house pairs of HCC tissues were examined, and ST8SIA6-AS1 levels were determined through real-time polymerase chain reaction (PCR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!