SMYD3 enzyme is overexpressed in many types of cancer and its role in the methylation of cytoplasmic mitogen-activated protein kinase, kinase kinase 2 (MAP3K2), has been linked to promotion of Kras-driven cancer in pancreatic ductal and lung adenocarcinoma. A hybrid 3D structure-based pharmacophore model was generated using crystal structures of SMYD3 complexed with sinefungin and was used to search for potential SMYD3 inhibitors through virtual screening of the Maybridge database. The retrieved hits from screening were further docked into the binding site of SMYD3 using CDOCKER docking algorithms. The top-ranked hits were selected and their inhibitory activity was evaluated. The results obtained helped us to find an SMYD3 small molecule hit inhibitor scaffold.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4155/fmc-2018-0462 | DOI Listing |
Sci Rep
January 2025
Thoracic and GI Malignancies Branch, National Institutes of Health, 10 Center Drive, 2B50C, Bethesda, MD, 20892, USA.
Human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer type in the world and is associated with an overall poor prognosis. The protein methyltransferase SET and MYND domain-containing 3 (SMYD3), which trimethylates H3K4, activates gene transcription and enhances several oncogenic pathways, including epithelial-mesenchymal transition and cell cycle related pathways, in various cancer types. It was also recently shown that SMYD3 is overexpressed in HPV-negative HNSCC, and represses the expression of type I IFN response genes, contributing to resistance to anti-PD-1 checkpoint blockade in this disease.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
November 2024
Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy; Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, Bari 70124, Italy. Electronic address:
Drug resistance is a significant challenge in oncology and is driven by various mechanisms, among which a crucial role is played by enhanced DNA repair. Thus, targeting DNA damage response (DDR) factors with specific inhibitors is emerging as a promising therapeutic strategy. An important process involved in the modulation of DNA repair pathways, and hence in drug resistance, is post-translational modification (PTM).
View Article and Find Full Text PDFAdv Sci (Weinh)
October 2024
State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
Most deaths in breast cancer patients are attributed to metastasis, and lung metastasis is associated with a particularly poor prognosis; therefore it is imperative to identify potential target for intervention. The transforming growth factor-β (TGF-β) pathway plays a vital role in breast cancer metastasis, in which Smad3 is the key mediator and performs specific functions by binding with different cofactors. However, Smad3 cofactors involved in lung metastasis have not yet been identified.
View Article and Find Full Text PDFInt J Mol Sci
May 2024
Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA.
The primary cilium is a microtubule-based sensory organelle that plays a critical role in signaling pathways and cell cycle progression. Defects in the structure and/or function of the primary cilium result in developmental diseases collectively known as ciliopathies. However, the constituents and regulatory mechanisms of the primary cilium are not fully understood.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
May 2024
Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy.
Background: SMYD3 has been found implicated in cancer progression. Its overexpression correlates with cancer growth and invasion, especially in gastrointestinal tumors. SMYD3 transactivates multiple oncogenic mechanisms, favoring cancer development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!