Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0284185119860226 | DOI Listing |
Objectives: This study evaluates the performance of a clinical dual-source photon-counting computed tomography (PCCT) system in quantifying iodine within calcified vessels, using 3D- printed phantoms with vascular-like structures lined with calcium.
Methods: Parameters assessed include lumen diameters (4, 6, 8, 10, and 12 mm), phantom sizes (S: 20×20 cm, M: 25×25 cm, L: 30×40 cm, XL: 40×50 cm, representing the 99th percentile of US patient sizes), and iodine concentrations (2, 5, and 10 mg/mL). Scans were performed at radiation dose levels of 5, 10, 15, and 20 mGy to systematically evaluate iodine quantification accuracy and spectral imaging performance.
Neuroradiol J
January 2025
Division of Neurological Radiology, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Thailand.
Dual-energy CT (DECT), also known as spectral CT, has advanced diagnostic capabilities in head and neck pathologies beyond those of conventional single-energy CT (SECT). By having images at two distinct energy levels, DECT generates virtual monoenergetic images (VMIs), iodine maps, and quantitative features such as iodine concentration (IC) and spectral Hounsfield unit attenuation curves (SHUAC), which leads to enhancing tissue characterization, reducing artifacts, and differentiating head and neck pathologies. This review highlights DECT's applications in evaluating head and neck squamous cell carcinoma (SCC), thyroid cartilage invasion, cervical lymph node metastasis, radiation therapy planning, post-treatment assessment, and role in other head and neck conditions, such as infection and sialolithiasis.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany.
Background: The aim of this study was to assess the possibility of image improvement of ECG-gated, high-pitch computed tomography angiography (CTA) of the thoracoabdominal aorta before transaortic valve replacement (TAVR) on a novel dual-source photon-counting detector CT (PCD-CT) in the setting of suboptimal low-contrast attenuation.
Methods: Continuously examined patients who underwent an ECG-gated, high-pitch CTA of the aorta on a PCD-CT with a contrast decrease of at least 50% between the ascending aorta and the common femoral arteries (CFA) were included. Patient characteristics were documented.
Phys Med Biol
January 2025
Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, United States of America.
. To study the effect of dose-rate in the time evolution of chemical yields produced in pure water versus a cellular-like environment for FLASH radiotherapy research.A version of TOPAS-nBio with Tau-Leaping algorithm was used to simulate the homogenous chemistry stage of water radiolysis using three chemical models: (1) liquid water model that considered scavenging of, Hby dissolved oxygen; (2) Michaels & Hunt model that considered scavenging ofOH,, and Hby biomolecules existing in cellular environment; (3) Wardman model that considered model 2) and the non-enzymatic antioxidant glutathione (GSH).
View Article and Find Full Text PDFInvest Radiol
January 2025
From the Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany (Y.C.L., N.M., P.A.K., A.I., T.D., J.A.L., D.K.); and Siemens Healthineers AG, Erlangen, Germany (S.F., V.H., B.S.).
Objectives: The aim of this study was to assess the impact of an iterative metal artifact reduction (iMAR) algorithm combined with virtual monoenergetic images (VMIs) for artifact reduction in photon-counting detector computed tomography (PCDCT) during interventions.
Materials And Methods: Using an abdominal phantom, we conducted evaluations on the efficacy of iMAR and VMIs for mitigating image artifacts during interventions on a PCDCT. Four different puncture devices were employed under 2 scan modes (QuantumSn at 100 kV, Quantumplus at 140 kV) to simulate various clinical scenarios.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!