We investigated the protective effects of 3-bromo-4,5-dihydroxybenzaldehyde (BDB) from Harvey against hydrogen peroxide (HO)-induced apoptosis in Vero cells. BDB exhibited scavenging activity for DPPH, hydroxyl, and alkyl radicals. BDB also inhibited H2O2-induced lipid peroxidation, cell death, and apoptosis in Vero cells by inhibiting the production of ROS. To evaluate the molecular mechanisms of apoptosis inhibition, the expression of Bax/Bcl-xL and NF-κB was assessed by western blot assay. BDB significantly suppressed the cleavage of caspase-9 and PARP and reduced Bax levels in HO-induced Vero cells. Besides, BDB suppressed the phosphorylation of NF-κB and the translocation of p65 in HO-induced cells. Furthermore, we evaluated the effect of BDB on ROS production, cell death, and lipid peroxidation in an HO-stimulated zebrafish embryo model. Taken together, these results indicated that ROS generation and cell death were significantly inhibited by BDB in zebrafish embryos, thereby proving that BDB exerts excellent antioxidant activity in vitro and in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4014/jmb.1904.04062 | DOI Listing |
J Exp Pharmacol
January 2025
Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, West Java, Indonesia.
This narrative review intends to provide thorough information on the anti-inflammatory activities of plants, the largest genus of the family Zingiberaceae. The articles were searched on the PubMed database using 'Alpinia AND anti-inflammatory activity' as the keywords, filtered to articles published from 2020 to 2024 and free full-text. Of the approximately 248 members of the genus plants, the most commonly studied for their anti-inflammatory activities are , , , and .
View Article and Find Full Text PDFMikrobiyol Bul
January 2025
Kocaeli Üniversitesi Tıp Fakültesi, Tıbbi Mikrobiyoloji Anabilim Dalı, Kocaeli.
Son yıllarda pandemi nedeniyle virüslerin tanı ve tedavisine yönelik terapötik yöntemlerin geliştirilmesi ve antivirallerin test edilmesi amacıyla çok sayıda in vitro çalışma yapılmaktadır. Literatürde SARS-CoV-2'nin modellenebilmesi için HCoV-229E'nin kullanımının güvenli ve yeterli olup olmadığını inceleyen çalışmalar sınırlıdır. Bu sebeple bu çalışmada, BSL-2 şartlarında gerçekleştirilebilen HCoV-229E kültürü ve kantitasyon çalışmalarının, BSL-3 şartları gerektiren SARS-CoV-2 deneylerinde bir ön çalışma modeli olup olamayacağının antiviral etkinlik analizleri üzerinden araştırılması amaçlanmıştır.
View Article and Find Full Text PDFTrop Biomed
December 2024
Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
Dengue, caused by the dengue virus (DENV), poses a significant global health challenge. Effective vaccines and treatments for dengue are lacking due to gaps in understanding its pathogenesis and mechanisms in severe cases. This study investigates the role of immunoglobulin E (IgE) in dengue, focusing on its potential association with virus neutralization and antibody-dependent enhancement (ADE) in DENV replication.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand.
Our phytochemical investigation of the roots of led to the isolation of two new lanostane triterpenes, 3-acetylpolycarpol () and 15-acetylpolycarpol (), as well as 15 known compounds (-). The structures of the isolated compounds were elucidated by an analysis of spectroscopic data. Compounds - were tested against nonsmall cell lung cancer cells (A549) and human cervical carcinoma cells (HeLa) using an MTT assay.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Department of Laboratory Medicine, Suzhou Mental Health Center, the Affiliated Guangji Hospital of Soochow University, Suzhou215137, Jiangsu, China.
Enterovirus 71 (EV-71) is a major pathogenic factor that causes hand, foot, and mouth disease in young children and infants. Given the limited treatments for EV-71 infection, discovering new host factors and understanding the mechanisms involved will aid in combating this viral infection. Neutral sphingomyelinase-2 (nSMase-2, encoded by SMPD3) is a crucial cellular cofactor in viral infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!