NMR relaxation dispersion experiments play a central role in exploring molecular motion over an important range of timescales, and are an example of a broader class of multidimensional NMR experiments that probe important biomolecules. However, resolving the spectral features of these experiments using the Fourier transform requires sampling the full Nyquist grid of data, making these experiments very costly in time. Practitioners often reduce the experiment time by omitting 1D experiments in the indirectly observed dimensions, and reconstructing the spectra using one of a variety of post-processing algorithms. In prior work, we described a fast, Fourier-based reconstruction method using iterated maps according to the Difference Map algorithm of Veit Elser (DiffMap). Here we describe coDiffMap, a new reconstruction method that is based on DiffMap, but which exploits the strong correlations between 2D data slices in a pseudo-3D experiment. We apply coDiffMap to reconstruct dispersion curves from an [Formula: see text] relaxation dispersion experiment, and demonstrate that the method provides fast reconstructions and accurate relaxation curves down to very low numbers of sparsely-sampled data points.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7370911 | PMC |
http://dx.doi.org/10.1007/s10858-019-00263-3 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
To simplify the composition and improve the efficacy of metal-phenolic network (MPN)-based nanomedicine, herein, we designed an MPN platform to deliver programmed death ligand-1 (PD-L1) antibody (anti-PD-L1) for combined tumor chemo/chemodynamic/immune therapy. Here, generation 5 poly(amidoamine) dendrimers conjugated with gossypol (Gos) through boronic ester bonds were used as a synthetic polyphenol to coordinate Mn, and then complexed with anti-PD-L1 to obtain the nanocomplexes (for short, DPGMA). The prepared DPGMA exhibited good water dispersibility with a hydrodynamic size of 166.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Douglas Mental Health University Institute, Montreal, QC, Canada.
White matter hyperintensities (WMHs) are frequently observed in ageing individuals, and have a higher prevalence in neurodegenerative disorders such as Alzheimer's disease. Ex-vivo assessments of the microstructural alterations within WMHs have reported heterogeneous tissue alterations, with demyelination, axonal loss, and inflammation presenting with various degrees of severity. There is a crucial need to better assess the severity of WMH microstructural alterations in vivo, in particular with the emergence of anti-amyloid immunotherapies and the associated risk of Amyloid Related Imaging Abnormalities (ARIAs) in individuals with comorbid vascular disease.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
Searching for single-molecule magnets (SMM) with large effective blocking barriers, long relaxation times, and high magnetic blocking temperatures is vitally important not only for the fundamental research of magnetism at the molecular level but also for the realization of new-generation magnetic memory unit. Actinides (An) atoms possess extremely strong spin-orbit coupling (SOC) due to their 5 orbitals, and their ground multiplets are largely split into several sublevels because of the strong interplay between the SOC of An atoms and the crystal field (CF) formed by ligand atoms. Compared to TM-based SMMs, more dispersed energy level widths of An-based SMMs will give a larger total zero field splitting (ZFS) and thus provide a necessary condition to derive a higher .
View Article and Find Full Text PDFAdv Mater
January 2025
Laboratory of Advanced Materials, Institute of Optoelectronics, Fudan University, Shanghai, 200438, P. R. China.
Metal single atoms (SA)-support interactions inherently exhibit significant electrochemical activity, demonstrating potential in energy catalysis. However, leveraging these interactions to modulate electronic properties and extend application fields is a formidable challenge, demanding in-depth understanding and quantitative control of atomic-scale interactions. Herein, in situ, off-axis electron holography technique is utilized to directly visualize the interactions between SAs and the graphene surface.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China.
The absence of the enhancement of fluorescence in carbon dots (CDs) through doping with transition metal atoms (TMAs) hinders the advancement of multi-modal bio-imaging CDs with high photoluminescence quantum yield (PLQY). Herein, Mn-atomically-doped R-CDs (R-Mn-CDs) with a high PLQY of 41.3% in water is presented, enabling efficient in vivo dual-mode fluorescence/magnetic resonance (MR) imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!