Shift of biofilm and suspended bacterial communities with changes in anode potential in a microbial electrolysis cell treating primary sludge.

Sci Total Environ

Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada. Electronic address:

Published: November 2019

This study, for the first time, documented microbial community shifts in response to the changes in anode potential in a microbial electrolysis cell (MEC) operated with primary sludge. At an anode potential of -0.4 V vs. Ag/AgCl, the MEC showed COD and VSS removal efficiencies of 73 ± 1% and 75 ± 2%, respectively. The volumetric current density and specific hydrogen production rate were 23 ± 1.2 A/m, and 145 ± 4.1 L/m-d, respectively. The anodic microbial community was consisted of various fermentative/hydrolytic bacteria (e.g., Bacteroides and Dysgonomonas) and anode-respiring bacteria (Geobacter), while different hydrolytic/fermentative bacteria were abundant in suspension. The MEC showed substantially inferior performance along with a higher accumulation of various volatile fatty acids when the anode potential was switched to more positive values (0 V and +0.4 V). Both biofilms and suspended communities were also shifted when the anode potential was changed. Notably, at +0.4 V, Geobacter genus entirely disappeared from the biofilms, while Paludibacter species (known fermentative bacteria) were selectively enriched in biofilms. Also, the relative abundance of genus Bacteroides (known hydrolytic bacteria) substantially decreased in both biofilms and suspension, which was correlated with the inferior hydrolysis of VSS. Quantitative comparison of biofilms and suspended microbial communities at different anode potentials revealed a sharp decrease in bacterial cell numbers in anode biofilms after changing anode potential from -0.4 V to +0.4 V. By contrast, bacterial cell numbers in suspension were slightly decreased. Collectively, these results provide new insights into the role of anode potential in shaping key microbial players associated with hydrolysis/fermentation and anodic respiration processes when MECs are operated with real biowastes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.06.519DOI Listing

Publication Analysis

Top Keywords

anode potential
28
anode
9
changes anode
8
potential microbial
8
microbial electrolysis
8
electrolysis cell
8
primary sludge
8
microbial community
8
potential -04 v
8
biofilms suspended
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!