Food allergies are recognized as a growing public health concern, with an estimated 3% of adults and 6-8% of children affected by food allergy disorders. Hence, food allergen detection, labeling, and management have become significant priorities within the food industry, and there is an urgent requirement for reliable, sensitive, and user-friendly technologies to trace food allergens in food products. In this critical review, we provide a comprehensive overview of the principles and applications of surface plasmon resonance (SPR) biosensors in the identification and quantification of food allergens (milk, egg, peanut, and seafood), including fiber-optic surface plasmon resonance (FOSPR), surface plasmon resonance imaging (SPRI), localized surface plasmon resonance (LSPR), and transmission surface plasmon resonance (TSPR). Moreover, the characteristics and fitness-for-purpose of each reviewed SPR biosensor is discussed, and the potential of newly developed SPR biosensors for multi-allergen real-time detection in a complex food system is highlighted. Such SPR biosensors are also required to facilitate the reliable, high-throughput, and real-time detection of food allergens by the food control industry and food safety control officials to easily monitor cross-contamination during food processing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2019.111449 | DOI Listing |
Nano Lett
January 2025
Institut Charles Sadron, Université de Strasbourg and CNRS, 67034 Strasbourg, France.
Anisometric plasmonic nanoparticles find applications in various fields, from photocatalysis to biosensing. However, exposure to heat or to specific chemical environments can induce their reshaping, leading to loss of function. Understanding this process is therefore relevant both for the fundamental understanding of such nano-objects and for their practical applications.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea.
Molecular diagnosis limitations, including complex treatment processes, low cost-effectiveness, and operator-dependent low reproducibility, interrupt the timely prevention of disease spread and the development of medical devices for home and outdoor uses. A newly fabricated gold nanopillar array-based film is presented for superior photothermal energy conversion. Magnifying the metal film surface-to-volume ratio increases the photothermal energy conversion efficiency, resulting in a swift reduction in the gene amplification reaction time.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemical Engineering, Ataturk University, 25240 Erzurum, Turkey.
The combination of plasmonic metals and MXene, as a new and interesting member of the 2D material class, may provide unique advantages in terms of low cost, versatility, flexibility, and improved activity as an ideal surface-enhanced Raman spectroscopy (SERS) platform. Despite the recent progress, the present studies on the utilization of plasmonic metal/MXene-based SERS systems are quite limited and thereby benefits of the extraordinary properties of this combination cannot be realized. In this study, for the first time, we propose layer-by-layer (LbL) thin films of TiC MXene and gold nanoparticles (AuNPs) as a robust SERS platform (TiC/AuNPs).
View Article and Find Full Text PDFSoft Matter
January 2025
Faculty of Chemistry, Ho Chi Minh City University of Science, Vietnam National University, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive analytical technique with excellent molecular specificity. However, separate pristine nanoparticles produce relatively weak Raman signals. It is necessary to focus on increasing the "hot-spot" density generated at the nanogaps between the adjacent nanoparticles (second-generation SERS hotspot), thus significantly boosting the Raman signal by creating an electromagnetic field.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Dept of Biochemistry & Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
Bio-Layer Interferometry (BLI) is a technique that uses optical biosensing to analyze interactions between molecules. The analysis of molecular interactions is measured in real-time and does not require fluorescent tags. BLI uses disposable biosensors that come in a variety of formats to bind different ligands including biotin, hexahistidine, GST, and the Fc portion of antibodies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!