Left atrial imaging and registration of fibrosis with conduction voltages using LGE-MRI and electroanatomical mapping.

Comput Biol Med

Department of Systems and Computer Engineering, Carleton University, 1125, Colonel By Drive, Ottawa, ON, Canada, K1S 5B6; School of Engineering, University of Guelph, 50 Stone Rd E., Guelph, ON, N1G 2W1, Canada. Electronic address:

Published: August 2019

Background And Purpose: Abnormal electrical conduction and excitability associated with fibrosis in the left atrium (LA) may serve as a substrate for atrial fibrillation (AF). Electroanatomical voltage mapping systems (EAMs) have become a dominant facilitator to treat AF with catheter ablation assisted by additional diagnostic imaging modalities. Importantly, AF has been associated with structural changes to the extracellular matrix of the myocardium, including increased collagen deposition-a process known as fibrosis. Late gadolinium enhancement-magnetic resonance imaging (LGE-MRI) may aid in guiding AF cardiac ablation therapy by determination of location of fibrosis in the LA. To locate fibrosis for cardiac ablation, however, accurate registration between EAMs and LGE-MRI data is crucial. The purpose of this work was to develop a method for registering EAMs with late gadolinium enhancement-magnetic resonance (LGE-MR) images of fibrosis.

Methods: Twenty patients with persistent AF, who underwent magnetic resonance imaging scanning and EAMs prior to first-time catheter ablation, participated in the study. In our registration pipeline, LGE-MR images were registered to the left atrial surface on EAMs using manual alignment followed by iterative closest point (ICP), and non-rigid ICP (NICP) algorithm.

Results And Conclusions: The results demonstrate that NICP provided a substantial reduction in registration error when compared to the use of affine ICP alone. Regions of fibrosis on LGE-MR images identified using the signal threshold to reference mean threshold demonstrated the most regional overlap with low bipolar voltage points on EAMs. Successful co-registration of LGE-MR images to EAMs may assist electro-physiologists in selecting candidate targets for ablation and ultimately, reduce the rate of AF recurrence for patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2019.103341DOI Listing

Publication Analysis

Top Keywords

lge-mr images
16
left atrial
8
catheter ablation
8
late gadolinium
8
gadolinium enhancement-magnetic
8
enhancement-magnetic resonance
8
resonance imaging
8
cardiac ablation
8
eams
7
fibrosis
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!