The present work aimed to explore the innovative hypothesis that different transcript/protein variants of a pro-neurotrophin may generate different biological outcomes in a cellular system. Nerve growth factor (NGF) is important in the development and progression of neurodegenerative and cancer conditions. Mature NGF (mNGF) originates from a precursor, proNGF, produced in mouse in two major variants, proNGF-A and proNGF-B. Different receptors bind mNGF and proNGF, generating neurotrophic or neurotoxic outcomes. It is known that dysregulation in the proNGF/mNGF ratio and in NGF-receptors expression affects brain homeostasis. To date, however, the specific roles of the two major proNGF variants remain unexplored. Here we attempted a first characterization of the possible differential effects of proNGF-A and proNGF-B on viability, differentiation and endogenous ngf gene expression in the PC12 cell line. We also investigated the differential involvement of NGF receptors in the actions of proNGF. We found that native mouse mNGF, proNGF-A and proNGF-B elicited different effects on PC12 cell survival and differentiation. Only mNGF and proNGF-A promoted neurotrophic responses when all NGF receptors are exposed at the cell surface. Tropomyosine receptor kinase A (TrkA) blockade inhibited cell differentiation, regardless of which NGF was added to culture media. Only proNGF-A exerted a pro-survival effect when TrkA was inhibited. Conversely, proNGF-B exerted differentiative effects when the p75 neurotrophin receptor (p75) was antagonized. Stimulation with NGF variants differentially regulated the autocrine production of distinct proNgf mRNA. Overall, our findings suggest that mNGF and proNGF-A may elicit similar neurotrophic effects, not necessarily linked to activation of the same NGF-receptor, while the action of proNGF-B may be determined by the NGF-receptors balance. Thus, the proposed involvement of proNGF/NGF on the development and progression of neurodegenerative and tumor conditions may depend on the NGF-receptors balance, on specific NGF trancript expression and on the proNGF protein variant ratio.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2019.104498DOI Listing

Publication Analysis

Top Keywords

prongf-a prongf-b
12
mngf prongf-a
12
growth factor
8
ngf
8
development progression
8
progression neurodegenerative
8
ngf receptors
8
ngf-receptors balance
8
prongf
6
prongf-a
6

Similar Publications

The precursor of Nerve Growth Factor (proNGF) is the predominant form of NGF in the brain, where its tissue levels are increased in neurodegenerative diseases. proNGF exists in two main splicing variants, the long proNGF-A and the short proNGF-B. We demonstrated that proNGF-B is selectively increased in the hippocampus of rats affected by early diabetic encephalopathy and that native, purified proNGFs elicit different responses when used to stimulate PC12 cells.

View Article and Find Full Text PDF

Pro-nerve growth factor (proNGF) is the predominant form of NGF in the brain and its levels increase in neurodegenerative diseases. The balance between NGF receptors may explain the contradictory biological activities of proNGF. However, the specific role of the two main proNGF variants is mostly unexplored.

View Article and Find Full Text PDF

Regenerative capability of the peripheral nervous system after injury is enhanced by Schwann cells (SCs) producing several growth factors. The clinical use of SCs in nerve regeneration strategies is hindered by the necessity of removing a healthy nerve to obtain the therapeutic cells. Adipose-derived stem cells (ASCs) can be chemically differentiated towards a SC-like phenotype (dASCs), and represent a promising alternative to SCs.

View Article and Find Full Text PDF

The present work aimed to explore the innovative hypothesis that different transcript/protein variants of a pro-neurotrophin may generate different biological outcomes in a cellular system. Nerve growth factor (NGF) is important in the development and progression of neurodegenerative and cancer conditions. Mature NGF (mNGF) originates from a precursor, proNGF, produced in mouse in two major variants, proNGF-A and proNGF-B.

View Article and Find Full Text PDF

Diabetes induces early sufferance in the cholinergic septo-hippocampal system, characterized by deficits in learning and memory, reduced hippocampal plasticity and abnormal pro-nerve growth factor (proNGF) release from hippocampal cells, all linked to dysfunctions in the muscarinic cholinergic modulation of hippocampal physiology. These alterations are associated with dysregulation of several cholinergic markers, such as the NGF receptor system and the acetylcholine biosynthetic enzyme choline-acetyl transferase (ChAT), in the medial septum and its target, the hippocampus. Controlled and repeated sensory stimulation by electroacupuncture has been proven effective in counteracting the consequences of diabetes on cholinergic system physiology in the brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!