A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

TET1 regulates DNA repair in human glial cells. | LitMetric

TET1 regulates DNA repair in human glial cells.

Toxicol Appl Pharmacol

Department of Neurology, Hugo W. Moser Research Institute at Kennedy Krieger, 707 N. Broadway, Baltimore, MD 21205, USA; Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA. Electronic address:

Published: October 2019

Glioblastomas are the most aggressive of malignant brain cancers with a median patient survival of approximately 18 months. We recently demonstrated that Tet methylcytosine dioxygenase 1(TET1) is involved in cellular responses to ionizing radiation (IR) in glial-, glioblastoma-, and non-tumor-derived cells. This study used a lentiviral-mediated knockdown of TET1 to further dissect the contribution of TET1 to the DNA damage response in glial cell lines by evaluating its role in DNA repair. TET1-deficient glial cell lines displayed attenuated cytotoxicity compared to non-targeted knockdown after treatment with IR but these differences were not observed between control and TET1 deficient in response to inhibitors of Na/K-ATPase. Additionally, the percentage of glial cells displaying γH2A.x foci was greatly reduced in TET1-deficient glial cells compared to non-targeted knockdown conditions in response to IR and topoisomerase inhibitors. We also observed a lower percentage and a delay in 53BP1 foci formation, a marker of non-homologous end-joining, in response to IR and topoisomerase inhibitors in TET1-deficient glial cells. DNA-PK, another marker of non-homologous end-joining, was also lower in TET1-deficient glial cell lines. Interestingly, TET1-deficient glial cells displayed higher numbers of DNA strand breaks compared to control cells and repaired DNA breaks less efficiently in Comet assays. We suggest that attenuated DNA repair in TET1 deficient gliomas leads to genomic instability, which underlies poor patient survival.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184935PMC
http://dx.doi.org/10.1016/j.taap.2019.114646DOI Listing

Publication Analysis

Top Keywords

glial cells
20
tet1-deficient glial
20
dna repair
12
glial cell
12
cell lines
12
glial
8
patient survival
8
compared non-targeted
8
non-targeted knockdown
8
tet1 deficient
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!