Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Glioblastomas are the most aggressive of malignant brain cancers with a median patient survival of approximately 18 months. We recently demonstrated that Tet methylcytosine dioxygenase 1(TET1) is involved in cellular responses to ionizing radiation (IR) in glial-, glioblastoma-, and non-tumor-derived cells. This study used a lentiviral-mediated knockdown of TET1 to further dissect the contribution of TET1 to the DNA damage response in glial cell lines by evaluating its role in DNA repair. TET1-deficient glial cell lines displayed attenuated cytotoxicity compared to non-targeted knockdown after treatment with IR but these differences were not observed between control and TET1 deficient in response to inhibitors of Na/K-ATPase. Additionally, the percentage of glial cells displaying γH2A.x foci was greatly reduced in TET1-deficient glial cells compared to non-targeted knockdown conditions in response to IR and topoisomerase inhibitors. We also observed a lower percentage and a delay in 53BP1 foci formation, a marker of non-homologous end-joining, in response to IR and topoisomerase inhibitors in TET1-deficient glial cells. DNA-PK, another marker of non-homologous end-joining, was also lower in TET1-deficient glial cell lines. Interestingly, TET1-deficient glial cells displayed higher numbers of DNA strand breaks compared to control cells and repaired DNA breaks less efficiently in Comet assays. We suggest that attenuated DNA repair in TET1 deficient gliomas leads to genomic instability, which underlies poor patient survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184935 | PMC |
http://dx.doi.org/10.1016/j.taap.2019.114646 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!