Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In recent years, metabolomics has been used to clarify the biology underlying biological samples. In the field of animal breeding, investigating the magnitude of genetic control on the metabolomic profiles of animals and their relationships with quantitative traits adds valuable information to animal improvement schemes. In this study, we analyzed metabolomic features (MFs) extracted from the metabolomic profiles of 843 male Holstein calves. The metabolomic profiles were obtained using nuclear magnetic resonance (NMR) spectroscopy. We investigated 2 alternative methods to control for peak shifts in the NMR spectra, binning and aligning, to determine which approach was the most efficient for assessing genetic variance. Series of univariate analyses were implemented to elucidate the heritability of each MF. Furthermore, records on BW and ADG from 154 to 294 d of age (ADG154-294), 294 to 336 d of age (ADG294-336), and 154 to 336 d of age (ADG154-336) were used in a series of bivariate analyses to establish the genetic and phenotypic correlations with MFs. Bivariate analyses were only performed for MFs that had a heritability significantly different from zero. The heritabilities obtained in the univariate analyses for the MFs in the binned data set were low (<0.2). In contrast, in the aligned data set, we obtained moderate heritability (0.2 to 0.5) for 3.5% of MFs and high heritability (more than 0.5) for 1% of MFs. The bivariate analyses showed that ~12%, ~3%, ~9%, and ~9% of MFs had significant additive genetic correlations with BW, ADG154-294, ADG294-336, and ADG154-336, respectively. In all of the bivariate analyses, the percentage of significant additive genetic correlations was higher than the percentage of significant phenotypic correlations of the corresponding trait. Our results provided insights into the influence of the underlying genetic mechanisms on MFs. Further investigations in this field are needed for better understanding of the genetic relationship among the MFs and quantitative traits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6735847 | PMC |
http://dx.doi.org/10.1093/jas/skz228 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!