A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimization of hybrid polymer preparation by ex situ embedding of waste Fe/Mn oxides into chitosan matrix as an effective As(III) and As(V) sorbent. | LitMetric

Optimization of hybrid polymer preparation by ex situ embedding of waste Fe/Mn oxides into chitosan matrix as an effective As(III) and As(V) sorbent.

Environ Sci Pollut Res Int

Department of Industrial Chemistry, Wroclaw University of Economics, ul. Komandorska 118/120, 53-345, Wrocław, Poland.

Published: September 2019

A hybrid polymer for deep removal of arsenic from aqueous solutions was obtained by loading of waste Fe/Mn oxides into a chitosan matrix. The process was optimized by studying the influence of selected individual factors and their reciprocal combinations on the adsorptive and physical properties of the product. The influence of chitosan solution concentration, inorganic load amount, the ratio of Fe/Mn oxides to chitosan, and polymer cross-linking degree on kinetics of As(III) and As(V) adsorption was examined. The optimal values of the parameters were chitosan polymer concentration 1.5% w/w, inorganic load to chitosan ratio 1.67, and glutaraldehyde to chitosan amine groups molar ratio 3:1. The selected products were evaluated in terms of their morphology (scanning electron microscopy (SEM) with EDS analysis), porosity (N and CO adsorption isotherms), surface properties (Fourier-transform infrared spectroscopy (FTIR), isoelectric point determination) and durability in an acidic environment. The proposed process makes it possible to obtain a product combining beneficial adsorptive properties toward arsenic with the physical form and durability essential in fixed-bed adsorption systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6717189PMC
http://dx.doi.org/10.1007/s11356-019-05856-xDOI Listing

Publication Analysis

Top Keywords

fe/mn oxides
12
oxides chitosan
12
hybrid polymer
8
waste fe/mn
8
chitosan matrix
8
asiii asv
8
inorganic load
8
chitosan polymer
8
chitosan
7
optimization hybrid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!