A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cascading detection model for prediction of apnea-hypopnea events based on nasal flow and arterial blood oxygen saturation. | LitMetric

Purpose: Sleep apnea and hypopnea syndrome (SAHS) seriously affects sleep quality. In recent years, much research has focused on the detection of SAHS using various physiological signals and algorithms. The purpose of this study is to find an efficient model for detection of apnea-hypopnea events based on nasal flow and SpO signals.

Methods: A 60-s detector and a 10-s detector were cascaded for precise detection of apnea-hypopnea (AH) events. Random forests were adopted for classification of data segments based on morphological features extracted from nasal flow and arterial blood oxygen saturation (SpO). Then the segments' classification results were fed into an event detector to locate the start and end time of every AH event and predict the AH index (AHI).

Results: A retrospective study of 24 subjects' polysomnography recordings was conducted. According to segment analysis, the cascading detection model reached an accuracy of 88.3%. While Pearson's correlation coefficient between estimated AHI and reference AHI was 0.99, in the diagnosis of SAHS severity, the proposed method exhibited a performance with Cohen's kappa coefficient of 0.76.

Conclusions: The cascading detection model is able to detect AH events and provide an estimate of AHI. The results indicate that it has the potential to be a useful tool for SAHS diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289775PMC
http://dx.doi.org/10.1007/s11325-019-01886-4DOI Listing

Publication Analysis

Top Keywords

cascading detection
12
detection model
12
apnea-hypopnea events
12
nasal flow
12
events based
8
based nasal
8
flow arterial
8
arterial blood
8
blood oxygen
8
oxygen saturation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!