Purpose: Maternal high-fat diet affects offspring and can induce metabolic disorders such as non-alcoholic fatty liver disease (NAFLD). New therapeutic strategies are being investigated as way to prevent or attenuate this condition. The objective of this study was to evaluate the effect of açaí supplementation in the maternal high-fat diet on dams and offspring lipid metabolism.

Methods: Female Fisher rats were divided in four groups and fed a control diet (C), a high-fat diet (HF), an açaí supplemented diet (CA) and a high-fat diet supplemented with açaí (HFA) 2 weeks before mating, during gestation and lactation. The effects of açaí were evaluated in the male offspring after birth (P1) and weaning (P21).

Results: HFA reduced relative liver weight, fat and cholesterol liver content in dams and improved liver steatosis as confirmed by histological analyses. HFA increased serum cholesterol and expression of Srebpf1 and Fasn genes. In offspring, HFA decreased relative liver weight, and serum cholesterol only in P21. An increase in the Sirt1, Srebpf1 and Fasn genes expression was observed in P21.

Conclusions: These results suggest that açaí supplementation may attenuate NAFLD in dams and protect offspring from the detrimental effects of lipid excess from a maternal high-fat diet.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00394-019-02040-2DOI Listing

Publication Analysis

Top Keywords

high-fat diet
20
maternal high-fat
12
diet
8
gestation lactation
8
liver steatosis
8
açaí supplementation
8
diet high-fat
8
relative liver
8
liver weight
8
serum cholesterol
8

Similar Publications

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

The incidence of type 2 diabetes has risen globally, in parallel with the obesity epidemic and environments promoting a sedentary lifestyle and low-quality diet. There has been scrutiny of ultra-processed foods (UPFs) as a driver of type 2 diabetes, underscored by their increasing availability and intake worldwide, across countries of all incomes. This narrative review addresses the accumulated evidence from investigations of the trends in UPF consumption and the relationship with type 2 diabetes incidence.

View Article and Find Full Text PDF

Exposure to toxins causes lasting damaging effects on the body. Numerous studies in humans and animals suggest that diet has the potential to modify the epigenome and these modifications can be inherited transgenerationally, but few studies investigate how diet can protect against negative effects of toxins. Potential evidence in the primary literature supports that caloric restriction, high-fat diets, high protein-to-carbohydrate ratios, and dietary supplementation protect against environmental toxins and strengthen these effects on their offspring's epigenome.

View Article and Find Full Text PDF

Obesity, along with hypoxia, is known to be a risk factor for pulmonary hypertension (PH), which can lead to right ventricular hypertrophy and eventually heart failure. Both obesity and PH influence the autonomic nervous system (ANS), potentially aggravating changes in the right ventricle (RV). This study investigates the combined effects of obesity and hypoxia on the autonomic innervation of the RV in a mouse model.

View Article and Find Full Text PDF

The study evaluated the anti-hyperlipidemic effects of myrcenol and curzerene on a high fat diet induced hyperlipidemia rat model. Thirty male albino rats were fed on a high-fat diet for four months. The HFD-induced hyperperlipidemia rats were treated with rosuvastatin (10 mg/kg), curzerene (130 mg/kg) and myrcenol (100 mg/kg) for four weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!