Background: Multiple system atrophy is a rare neurodegenerative disease characterised by aggregation of α-synuclein in oligodendrocytes and neurons. The polyphenol epigallocatechin gallate inhibits α-synuclein aggregation and reduces associated toxicity. We aimed to establish if epigallocatechin gallate could safely slow disease progression in patients with multiple system atrophy.
Methods: We did a randomised, double-blind, parallel group, placebo-controlled clinical trial at 12 specialist centres in Germany. Eligible participants were older than 30 years; met consensus criteria for possible or probable multiple system atrophy and could ambulate independently (ie, were at Hoehn and Yahr stages 1-3); and were on stable anti-Parkinson's, anti-dysautonomia, anti-dementia, and anti-depressant regimens (if necessary) for at least 1 month. Participants were randomly assigned (1:1) to epigallocatechin gallate or placebo (mannitol) via a web-generated permuted blockwise randomisation list (block size=2) that was stratified by disease subtype (parkinsonism-predominant disease vs cerebellar-ataxia-predominant disease). All participants and study personnel were masked to treatment assignment. Participants were given one hard gelatin capsule (containing either 400 mg epigallocatechin gallate or mannitol) orally once daily for 4 weeks, then one capsule twice daily for 4 weeks, and then one capsule three times daily for 40 weeks. After 48 weeks, all patients underwent a 4-week wash-out period. The primary endpoint was change in motor examination score of the Unified Multiple System Atrophy Rating Scale (UMSARS) from baseline to 52 weeks. Efficacy analyses were done in all people who received at least one dose of study medication. Safety was analysed in all people who received at least one dose of the study medication to which they had been randomly assigned. This trial is registered with ClinicalTrials.gov (NCT02008721) and EudraCT (2012-000928-18), and is completed.
Findings: Between April 23, 2014, and Sept 3, 2015, 127 participants were screened and 92 were randomly assigned-47 to epigallocatechin gallate and 45 to placebo. Of these, 67 completed treatment and 64 completed the study (altough one of these patients had a major protocol violation). There was no evidence of a difference in the mean change from baseline to week 52 in motor examination scores on UMSARS between the epigallocatechin gallate (5·66 [SE 1·01]) and placebo (6·60 [0·99]) groups (mean difference -0·94 [SE 1·41; 95% CI -3·71 to 1·83]; p=0·51). Four patients in the epigallocatechin gallate group and two in the placebo group died. Two patients in the epigallocatechin gallate group had to stop treatment because of hepatotoxicity.
Interpretation: 48 weeks of epigallocatechin gallate treatment did not modify disease progression in patients with multiple system atrophy. Epigallocatechin gallate was overall well tolerated but was associated with hepatotoxic effects in some patients, and thus doses of more than 1200 mg should not be used.
Funding: ParkinsonFonds Deutschland, German Parkinson Society, German Neurology Foundation, Lüneburg Foundation, Bischof Dr Karl Golser Foundation, and Dr Arthur Arnstein Foundation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S1474-4422(19)30141-3 | DOI Listing |
Foods
January 2025
Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
The major components of tea leaves and their infusions were analyzed for various types of green tea available in Japan in 2022. Almost all the green teas used were from the first crop, known for their high amino acid content. The amino acids theanine and arginine in green tea have been shown to reduce stress.
View Article and Find Full Text PDFFoods
January 2025
College of Life Science, Xinyang Normal University, Xinyang 464000, China.
The low stability of water-in-oil-in-water (W/O/W) double emulsions greatly limits their applications. Therefore, in this study, W/O/W Pickering double emulsions (PDEs) were prepared by a two-step emulsification method using polyglycerol polyricinoleate (PGPR) and xanthan gum/lysozyme nanoparticles (XG/Ly NPs) as lipophilic and hydrophilic emulsifiers, respectively. The regulation mechanism of the performance of PDEs by XG/Ly NPs was investigated, and the ability of the system to co-encapsulate epigallocatechin gallate (EGCG) and β-carotene was evaluated.
View Article and Find Full Text PDFFoods
January 2025
Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China.
Matcha is a very popular tea food around the world, being widely used in the food, beverage, health food, and cosmetic industries, among others. At present, matcha shade covering methods, matcha superfine powder processing technology, and digital evaluations of matcha flavor quality are receiving research attention. However, research on the differences in flavor and quality characteristics of matcha from the same tea tree variety from different typical regions in China is relatively weak and urgently required.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Aier Eye Hospital, Tianjin University, Fukang Road, Tianjin, 300110, China.
Sjögren's syndrome-related dry eye (SSDE) is a severe dry eye subtype characterized by significant immune cell attacks on the lacrimal gland. However, delivering immunosuppressive drugs to the lacrimal glands for SSDE therapy safely and sustainably poses significant challenges in clinical practice. Herein, a ROS-responsive microneedle patch with detachable functionality (CE-MN) is developed to enable straightforward and minimally invasive administration to the lacrimal gland area by penetrating the periocular skin.
View Article and Find Full Text PDFCells
January 2025
Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara 252-5201, Kanagawa, Japan.
While the impact of (-)-epigallocatechin-3-gallate (EGCG) on modulating nociceptive secondary neuron activity has been documented, it is still unknown how EGCG affects the excitability of nociceptive primary neurons in vivo. The objective of the current study was to investigate whether administering EGCG locally in rats reduces the excitability of nociceptive primary trigeminal ganglion (TG) neurons in response to mechanical stimulation in vivo. In anesthetized rats, TG neuronal extracellular single unit recordings were made in response to both non-noxious and noxious mechanical stimuli.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!