Adult EEG.

Handb Clin Neurol

Department of Neurology, Mayo Clinic College of Medicine and Health Sciences, Jacksonville, FL, United States.

Published: December 2019

AI Article Synopsis

  • EEG has been a trusted diagnostic tool for over 85 years, thanks to its reliability, low cost, and ability to analyze brain activity, especially with advancements in digital technology expanding its applications.
  • Despite new discoveries, fundamental neurophysiology remains vital in using EEG for diagnosing neurological events, classifying seizures, and assessing conditions even when other imaging methods appear normal.
  • Innovations like high-density EEG and quantitative EEG are enhancing the precision of epilepsy surgeries and deepening our understanding of brain functions.

Article Abstract

After more than 85 years of development and use in clinical practice, the electroencephalogram (EEG) remains a dependable, inexpensive, and useful diagnostic tool for the investigation of the electrophysiologic activity of the brain. The advent of digital technology has led to greater sophistication and multiple software applications to extend the utility of EEG beyond the confines of the laboratory. Despite the discovery of new waveforms, basic neurophysiologic principles remain essential to the clinical care of patients. Patterns in the interictal EEG make it possible to clarify the differential diagnosis of paroxysmal neurological events, classify seizure type and epilepsy syndromes, and characterize and quantify seizures when ictal recordings are obtained. EEG can also demonstrate cerebral dysfunction when structural imaging is normal to detect focal or lateralized abnormalities in patients with encephalopathy. High-density EEG with electrical source imaging has improved localization in candidates for epilepsy surgery. Quantitative EEG and broadband EEG are advancing our understanding of the functional processes of the brain itself.

Download full-text PDF

Source
http://dx.doi.org/10.1016/B978-0-444-64032-1.00007-2DOI Listing

Publication Analysis

Top Keywords

eeg
7
adult eeg
4
eeg years
4
years development
4
development clinical
4
clinical practice
4
practice electroencephalogram
4
electroencephalogram eeg
4
eeg remains
4
remains dependable
4

Similar Publications

A Bayesian dynamic stopping method for evoked response brain-computer interfacing.

Front Hum Neurosci

December 2024

Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands.

Introduction: As brain-computer interfacing (BCI) systems transition fromassistive technology to more diverse applications, their speed, reliability, and user experience become increasingly important. Dynamic stopping methods enhance BCI system speed by deciding at any moment whether to output a result or wait for more information. Such approach leverages trial variance, allowing good trials to be detected earlier, thereby speeding up the process without significantly compromising accuracy.

View Article and Find Full Text PDF

Purpose: Pain is a multidimensional, unpleasant emotional and sensory experience, and accurately assessing its intensity is crucial for effective management. However, individuals with cognitive impairments or language deficits may struggle to accurately report their pain. EEG provides insight into the neurological aspects of pain, while facial EMG captures the sensory and peripheral muscle responses.

View Article and Find Full Text PDF

Purpose: Varicella zoster virus-related encephalitis (VZV-RE) is a rare and often misdiagnosed condition caused by an infection with the VZV. It leads to meningitis or encephalitis, with patients frequently experiencing poor prognosis. In this study, we used metagenomic next-generation sequencing (mNGS) to rapidly and accurately detect and identify the VZV pathogen directly from cerebrospinal fluid (CSF) samples, aiming to achieve a definitive diagnosis for encephalitis patients.

View Article and Find Full Text PDF

Contralateral Neurovascular Coupling in Patients with Ischemic Stroke After Endovascular Thrombectomy.

Neurocrit Care

January 2025

Center for Data Science, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA.

Background: Neurovascular coupling (NVC) refers to the process of aligning cerebral blood flow with neuronal metabolic demand. This study explores the potential of contralateral NVC-linking neural electrical activity on the stroke side with cerebral blood flow velocity (CBFV) on the contralesional side-as a marker of physiological function of the brain. Our aim was to examine the association between contralateral NVC and neurological outcomes in patients with ischemic stroke following endovascular thrombectomy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!