Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Vegetables, once harvested and stored on supermarket shelves, continue to perform biochemical adjustments due to their modular nature and their ability to retain physiological autonomy. They can live after being harvested. In particular, the content of some essential nutraceuticals, such as carotenoids, can be altered in response to environmental or internal stimuli. Therefore, in the present study, we wondered whether endogenous rhythms continue to operate in commercial vegetables and if so, whether vegetable nutritional quality could be altered by such cycles. Our experimental model consisted of rocket leaves entrained under light/darkness cycles of 12/12 h over 3 days, and then we examined free-run oscillations for 2 days under continuous light or continuous darkness, which led to chlorophyll and carotenoid oscillations in both constant conditions. Given the importance of preserving food quality, the existence of such internal rhythms during continuous conditions may open new research perspective in nutrition science. However, while chromatographic techniques employed to determine pigment composition are accurate, they are also time-consuming and expensive. Here we propose for the first time an alternative method to estimate pigment content and the nutritional quality by the use of non-destructive and in situ optical techniques. These results are promising for nutritional quality assessments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6682859 | PMC |
http://dx.doi.org/10.3390/nu11071519 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!