The edible seaweed (GEE) is known to inhibit adipocyte differentiation. However, there has been no report on its effects in humans. In this study, we investigated whether GEE reduces body weight or fat mass in obese or overweight individuals. A total of 78 participants were randomly assigned to the test (GEE extract 1000 mg/day) and placebo groups at a 1:1 ratio, and treated for 12 weeks. At six or 12 weeks after randomization, they were evaluated for anthropometric parameters, biomarkers, and body composition. Changes in body weight and fat mass between the two groups was significantly different, as determined using ANCOVA adjusted for baseline, calorie intake, and physical activity. Body weight and fat mass were significantly decreased by GEE after 12 weeks but increased in the placebo group. Moreover, although not significant, triglyceride levels tended to decrease after GEE intake. There was no significant difference in other laboratory biomarkers between the two groups. Taken together, these results suggested that GEE significantly reduced body weight, especially fat mass, in overweight or obese individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6683047PMC
http://dx.doi.org/10.3390/nu11071513DOI Listing

Publication Analysis

Top Keywords

weight fat
20
fat mass
20
body weight
16
overweight obese
8
gee
6
fat
5
mass
5
body
5
effects weight
4
mass reduction
4

Similar Publications

The negative effects of particulate matter up to 2.5 μm in diameter (PM) and their mediating mechanisms have been studied in various tissues. However, little is known about the mechanism and long-term tracking underlying the sex-dependent effects of PM on skeletal muscle system modulation.

View Article and Find Full Text PDF

Background: Research into Alzheimer's Disease (AD) pathomechanisms frequently utilizes animal models with dominant mutations; however, the vast majority (>95%) of AD cases are idiopathic. Animal models with AD risk factors represent an approach with potentially greater translational validity. The predominant genetic risk factor for AD is the Apolipoprotein E ε4 (APOE4) polymorphism, with APOE4 homozygosity conferring approximately 15-fold higher risk relative to the normative APOE3/3 genotype.

View Article and Find Full Text PDF

Background: About two-thirds of those with Alzheimer's disease (AD) are women, most of whom are post-menopausal. Menopause accelerates the risk for dementia by increasing the risk for metabolic, cardiovascular, and cerebrovascular diseases. Mid-life metabolic disease (e.

View Article and Find Full Text PDF

Background: Excessive dietary fat is not only a risk factor for metabolic disorders but also for premature cognitive decline and Alzheimer's disease. Recent findings from our study revealed that even a few days of a high-fat diet (HFD) are sufficient to disrupt hippocampal bioenergetics, activate microglia, and induce cognitive decline in mice. We hypothesize that microglia, rather than merely responding to diet-induced damage, play a critical role in disrupting synaptic homeostasis.

View Article and Find Full Text PDF

Background: Cerebral amyloid angiopathy (CAA), characterized by the accumulation of amyloid protein in the cerebral vasculature, is highly prevalent in Alzheimer's disease (AD) patients and, on its own, increases the risk of hemorrhagic stroke, cognitive impairment, and dementia. Currently, there are no effective ways to treat or prevent CAA. Ketogenic diet (KD), characterized by high-fat, low-carbohydrate, and moderate amounts of protein consumption, has gained considerable attention in recent years for its potential therapeutic use in patients with neurodegenerative diseases, including Alzheimer's disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!