Cell-based therapeutic strategies afford major potential advantages in the repair of injured tendons. Generation of induced pluripotent stem cells (iPSCs) expands cell sources for "regenerative" therapy. However, its application in tendon repair is still limited and the effects remain unclear. In this study, equine tenocyte-derived iPSCs (teno-iPSCs) were generated by expressing four Yamanaka factors. Compared to parental tenocytes and bone marrow derived mesenchymal stem cells (BMSCs), the transcriptional activities of lineage-specific genes, including Mkx, Col1A2, Col14, DCN, ELN, FMOD, and TNC, were highly repressed in the resulting teno-iPSCs. Exposure to cyclic uniaxial mechanical loading increased the expression of Scx, Egr1, Col1A2, DCN, and TNC in teno-iPSCs and the expression of Scx, Egr1, DCN, and TNC in BMSCs. Reintroduction of tenogenic transcription factor Mohawk (Mkx) upregulated the expression of DCN in teno-iPSCs and the expression of Scx, Col14, and FMOD in BMSCs. Mechanical loading combined with ectopic expression of equine Mkx further enhanced the expression of Egr1, Col1A2, DCN, and TNC in teno-iPSCs and the expression of Scx, Egr1, and TNC in BMSCs. These data suggest that the repressed lineage-specific genes in the teno-iPSCs can be re-activated by mechanical loading and ectopic expression of Mkx. Our findings offer new insights into the application of iPSCs for basic and clinic research in tendon repair.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7082636 | PMC |
http://dx.doi.org/10.1016/j.scr.2019.101489 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!