Background: Rapid myelin water imaging (MWI) using a combined gradient and spin echo (GRASE) sequence can produce myelin specific metrics for the human brain. Spinal cord MWI could be similarly useful, but technical challenges have hindered routine application. GRASE rapid MWI was recently successfully implemented for imaging of healthy cervical spinal cord and may complement other advanced imaging methods, such as diffusion tensor imaging (DTI) and quantitative T (qT).
Objective: To demonstrate the feasibility of cervical cord GRASE rapid MWI in multiple sclerosis (MS), primary lateral sclerosis (PLS) and neuromyelitis optica spectrum disorder (NMO), with comparison to DTI and qT metrics.
Methods: GRASE MWI, DTI and qT data were acquired in 2 PLS, 1 relapsing-remitting MS (RRMS), 1 primary-progressive MS (PPMS) and 2 NMO subjects, as well as 6 age (±3 yrs) and sex matched healthy controls (HC). Internal cord structure guided template registrations, used for region of interest (ROI) analysis. Z score maps were calculated for the difference between disease subject and mean HC metric values.
Results: PLS subjects had low myelin water fraction (MWF) in the lateral funiculi compared to HC. RRMS subject MWF was heterogeneous within the cord. The PPMS subject showed no trends in ROI results but had a region of low MWF Z score corresponding to a focal lesion. The NMO subject with a longitudinally extensive transverse myelitis lesion had low values for whole cord mean MWF of 12.8% compared to 24.3% (standard deviation 2.2%) for HC. The NMO subject without lesions also had low MWF compared to HC. DTI and qT metrics showed similar trends, corroborating the MWF results and providing complementary information.
Conclusion: GRASE is sufficiently sensitive to detect decreased myelin within MS spinal cord plaques, NMO lesions, and PLS diffuse spinal cord injury. Decreased MWF in PLS is consistent with demyelination secondary to motor neuron degeneration. GRASE MWI is a feasible method for rapid assessment of myelin content in the cervical spinal cord and provides complementary information to that of DTI and qT measures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611998 | PMC |
http://dx.doi.org/10.1016/j.nicl.2019.101896 | DOI Listing |
J Spinal Cord Med
January 2025
Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan.
Objective: We investigated the construct validity, responsiveness, and interpretability of the Spinal Cord Injury Functional Ambulation Inventory (SCI-FAI) to determine its usefulness in measuring the functional level of gait.
Patients And Methods: This was a prospective observational study following the checklist of the Consensus-Based Standards for Selecting Health Measurement Instruments. The SCI-FAI consists of three items: Gait Parameter, Assistive Devices, and Temporal.
Neurourol Urodyn
January 2025
Department of Neurology, Hochzirl Hospital, Zirl, Austria.
Introduction: Neurogenic bladder dysfunction is a prevalent condition characterized by impaired bladder control resulting from neurological conditions, for example, spinal cord injury or traumatic brain injury (TBI). Detrusor overactivity is a typical symptom of central nervous system damage. A lesion affecting the pontine neural network typically results in loss of tonic inhibition exerted by the pontine micturition center and causes involuntary detrusor contractions.
View Article and Find Full Text PDFPM R
January 2025
Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA.
Background: Individuals with spinal cord injury (SCI) commonly have autonomic dysreflexia (AD) with increased sympathetic activity. After SCI, individuals have decreased baroreflex sensitivity and increased vascular responsiveness.
Objective: To evaluate the relationship between baroreflex and blood vessel sensitivity with AD symptoms.
Clin Exp Immunol
January 2025
Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
Introduction: Multiple Sclerosis (MS) is a complex auto-inflammatory disease affecting the brain and spinal cord, which results in axonal de-myelination and symptoms including fatigue, pain, and difficulties with vision and mobility. The involvement of the immune system in the pathology of MS is well established, particularly the adaptive T cell response, and there has been a particular focus on the IL-17-producing subset of Th17 cells and their role in driving disease. However, the importance of innate immune cells has not been so well characterised.
View Article and Find Full Text PDFAnn Transl Med
December 2024
[This corrects the article DOI: 10.21037/atm-22-2672.].
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!