Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Organochlorine pesticides have been banned for many years, but the residual trace amount of organochlorine in water may still pose ecotoxicological risk. Meanwhile, the potential risk of organochlorine pesticides released from sediments, especially into drinking water sources, is receiving increasing attention. The present study assessed the pollution and potential risk of drinking water sources along the midstream and downstream Yangtze River. Residues of organochlorine pesticides (OCPs) in water, suspended particle matter (SPM), and sediment were evaluated with isotope dilution HRGC/HRMS. The results indicated that OCPs in water, SPM, and sediment ranged in 0.52-92.97 ng/L, 0.10-4.10 ng/L, and 0.038-11.36 ng/g, respectively. The predominant OCPs in water, SPM, and sediment were β-HCH, p,p'-DDE and PeCB. At site Y1, 8, 13, 18, β-HCH has a higher proportion in sediment samples, while, α-HCH has a higher proportion in SPM samples. The industrial use of HCHs in the history was the main HCHs source for most water and sediment samples, which indicated an absence of fresh inputs of industrial HCHs. Meanwhile, the abundance of p,p'-DDE in water, sediment and SPM samples could be attributed to long-term aerobic degradation of DDTs. The values of ffsw of HCHs, DDTs and PeCB indicate the transfer from water to sediment. Risk assessment showed that HCHs and DDTs posed low ecotoxicological risk to the Yangtze River.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2019.109390 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!