A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Risk assessment of organochlorine pesticides in drinking water source of the Yangtze River. | LitMetric

Risk assessment of organochlorine pesticides in drinking water source of the Yangtze River.

Ecotoxicol Environ Saf

National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:

Published: October 2019

Organochlorine pesticides have been banned for many years, but the residual trace amount of organochlorine in water may still pose ecotoxicological risk. Meanwhile, the potential risk of organochlorine pesticides released from sediments, especially into drinking water sources, is receiving increasing attention. The present study assessed the pollution and potential risk of drinking water sources along the midstream and downstream Yangtze River. Residues of organochlorine pesticides (OCPs) in water, suspended particle matter (SPM), and sediment were evaluated with isotope dilution HRGC/HRMS. The results indicated that OCPs in water, SPM, and sediment ranged in 0.52-92.97 ng/L, 0.10-4.10 ng/L, and 0.038-11.36 ng/g, respectively. The predominant OCPs in water, SPM, and sediment were β-HCH, p,p'-DDE and PeCB. At site Y1, 8, 13, 18, β-HCH has a higher proportion in sediment samples, while, α-HCH has a higher proportion in SPM samples. The industrial use of HCHs in the history was the main HCHs source for most water and sediment samples, which indicated an absence of fresh inputs of industrial HCHs. Meanwhile, the abundance of p,p'-DDE in water, sediment and SPM samples could be attributed to long-term aerobic degradation of DDTs. The values of ffsw of HCHs, DDTs and PeCB indicate the transfer from water to sediment. Risk assessment showed that HCHs and DDTs posed low ecotoxicological risk to the Yangtze River.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2019.109390DOI Listing

Publication Analysis

Top Keywords

organochlorine pesticides
16
drinking water
12
yangtze river
12
ocps water
12
spm sediment
12
water sediment
12
water
10
risk assessment
8
ecotoxicological risk
8
potential risk
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!