Giant vesicles composed of phospholipids and amphiphilic block copolymers are useful for biomimetic drug delivery, for biophysical experiments, and for creating synthetic cells. Here, we report that large numbers of giant unilamellar vesicles (GUVs) can be formed on a broad range of fabrics composed of entangled cylindrical fibers. We show that fabrics woven from fibers of silk, wool, rayon, nylon, polyester, and fiberglass promote the formation of GUVs and giant polymer vesicles (polymersomes) in aqueous solutions. The result extends significantly previous reports on the formation of GUVs on cellulose paper and cotton fabric. Giant vesicles formed on all the fabrics from lipids with various headgroup charges, chains lengths, and chain saturations. Giant vesicles could be formed from multicomponent lipid mixtures, from extracts of plasma membranes, and from amphiphilic diblock and triblock copolymers, in both low ionic strength and high ionic strength solutions. Intriguingly, statistical characterization using a model lipid, 1,2-dioleoyl---3-phosphocholine, revealed that the majority of the fabrics yielded similar average counts of vesicles. Additionally, the vesicle populations obtained from the different fabrics had similar distributions of sizes. Fabrics are ubiquitous in society in consumer, technical, and biomedical applications. The discovery herein that biomimetic GUVs grow on fabrics opens promising new avenues in vesicle-based smart materials design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.9b01621 | DOI Listing |
Chem Asian J
January 2025
Keio University Faculty of Science and Technology Graduate School of Science and Technology: Keio Gijuku Daigaku Rikogakubu Daigakuin Rikogaku Kenkyuka, Department of Applied Chemistry, 3-14-1 Hiyoshi, Kohoku-ku, 2238522, Yokohama, JAPAN.
For the development of new functional materials for various applications, such as drug or gene delivery and environmental remediation, the relationship between function and morphology has been considered an important aspect for controlling affinity to the targets. However, there are only a few reports on this relationship because the molecular strategy for the precise control of vesicle shape has been restricted. Herein, we report the photocontrol of vesicle shape using azobenzene-containing amphiphilic switches.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037.
Biomolecular condensates are a ubiquitous component of cells, known for their ability to selectively partition and compartmentalize biomolecules without the need for a lipid membrane. Nevertheless, condensates have been shown to interact with lipid membranes in diverse biological processes, such as autophagy and T-cell activation. Since many condensates are known to have a net surface charge density and associated electric potential(s), we hypothesized that they can induce a local membrane potential.
View Article and Find Full Text PDFJ Oleo Sci
January 2025
Faculty of Science and Technology, Tokyo University of Science.
Biophys J
January 2025
Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel. Electronic address:
Migrasomes, the vesicle-like membrane micro-structures, arise on the retraction fibers (RFs), the branched nano-tubules pulled out of cell plasma membranes during cell migration and shaped by membrane tension. Migrasomes form in two steps: a local RF bulging is followed by a protein-dependent stabilization of the emerging spherical bulge. Here we addressed theoretically and experimentally the previously unexplored mechanism of bulging of membrane tubular systems.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA.
We present novel fluorescent cholesteryl probes (CNDs) with a modular design based on the solvatochromic 1,8-phthalimide scaffold. We have explored how different modules-linkers and head groups-affect the ability of these probes to integrate into lipid membranes and how they distribute intracellularly in mouse astrocytes and fibroblasts targeting lysosomes and lipid droplets. Each compound was assessed for its solvatochromic behavior in organic solvents and model membranes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!