Accurately tailoring electromagnetic (EM) materials for achieving high-performance EM interference (EMI) shielding is significantly imperative with increasing EM pollution worldwide. Green EMI shielding materials are attracting extensive attention because of the less additional environmental hazard caused by the lower secondary reflection. However, the conflict between high efficiency and eco-friendly nature makes green EMI shielding still challenging. In this work, a new strategy of turning a guest into a host is developed for the first time, and a unique WS-rGO architecture of mountain-like wall is constructed successfully achieving efficient and green EMI shielding. The shielding efficiency (SE) is over 20 dB in the investigated frequency range (2-18 GHz) and the maximum was 32 dB with an endearing green index ( ≈ 1.0). The efficient and green EMI SE is ascribed to the multilevel structure and intrinsic dielectric properties of the WS-rGO architecture, including the synergy of relaxation and conduction, multi-scattering between the interface and void, and the equivalent wedge effect. These results demonstrate that the WS-rGO architecture is a promising candidate in EM transducers, microwave imaging, EM protection, and energy devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b06509DOI Listing

Publication Analysis

Top Keywords

green emi
20
emi shielding
20
ws-rgo architecture
16
efficient green
8
green
6
emi
6
shielding
6
self-assembly construction
4
ws-rgo
4
construction ws-rgo
4

Similar Publications

3D-printed sodium alginate/carbon nanotube/graphene porous scaffolds crosslinked with Ca for high-performance electromagnetic shielding and Joule heating.

Carbohydr Polym

March 2025

State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China. Electronic address:

High-performance green functional materials have garnered significant interest for electromagnetic interference (EMI) shielding applications, but creating customized, low-density, high-strength and high-efficiency biomass-based shielding materials remains challenging. In this study, lightweight Ca doped sodium alginate (SA) porous scaffolds with a carbon nanotube (CNT)/graphene (Gr) hybrid conductive network were fabricated via direct ink writing (DIW) 3D printing. The SA/CNT/Gr inks with unique rheological properties were formulated and architectures with arbitrarily customized structures could be freely constructed based on the printable inks.

View Article and Find Full Text PDF

Eco-friendly cellulose paper composites: A sustainable solution for EMI shielding and green engineering applications.

Int J Biol Macromol

December 2024

International and Inter-University Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandhi University, Kottayam, Kerala 686 560, India; School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O.Box 17011, Doornfontein, 2028 Johannesburg, South Africa; Trivandrum Engineering, Science and Technology (TrEST) Research Park, Trivandrum 695016, India; School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala India 686560. Electronic address:

Cellulose paper-based composites represent a promising and sustainable alternative for electromagnetic interference (EMI) shielding applications. Derived from renewable and biodegradable cellulose fibers, these composites are enhanced with conductive fillers namely carbon nanotubes, graphene, or metallic nanoparticles, achieving efficient EMI shielding while maintaining environmental friendliness. Their lightweight, flexible nature, and mechanical robustness make them ideal for diverse applications, including wearable electronics, flexible circuits, and green electronics.

View Article and Find Full Text PDF

3D Printed Carbon Nanotube/Phenolic Composites for Thermal Dissipation and Electromagnetic Interference Shielding.

ACS Appl Mater Interfaces

December 2024

Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States.

Here we demonstrate direct ink write (DIW) additive manufacturing of carbon nanotube (CNT)/phenolic composites with heat dissipation and excellent electromagnetic interference (EMI) shielding capabilities without curing-induced deformation. Such polymer composites are valuable for protecting electronic devices from overheating and electromagnetic interference. CNTs were used as a multifunctional nanofiller to improve electrical and thermal conductivity, printability, stability during curing, and EMI shielding performance of CNT/phenolic composites.

View Article and Find Full Text PDF

High-throughput extraction of cellulose nanofibers from Imperata cylindrica grass for advanced bio composites.

Int J Biol Macromol

January 2025

Research Institute of Mechatronics, Department of Mechanical Engineering, Changwon National University, Uichang-gu, Changwon 51140, Gyeongsangnam-do, Republic of Korea. Electronic address:

Article Synopsis
  • A novel and cost-effective method for extracting cellulose nanofibers (ECNFs) from Imperata cylindrica grass was developed, resulting in high yield and purity.
  • The extracted ECNFs exhibited impressive characteristics, including a uniform diameter, high crystallinity, and small crystal size, confirmed through advanced analytical techniques.
  • ECNFs were shown to significantly improve the mechanical properties of chitosan composite films, while incorporating graphene nanoplatelets further enhanced their thermal stability, flame retardancy, and electromagnetic shielding capabilities.
View Article and Find Full Text PDF

Electromagnetic interference (EMI) shielding textiles have received widespread attention, and liquid metal (LM) shows superiority in flexible and deformable electronics. Here, we introduce a novel method using nanosilicates to help sinter LM through capillary evaporation, resulting in strong adhesion to substrates. By adjustment of the amount of nanosilicates, flexible EMI shielding yarns are created using dip-coating and curing processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!