Investigating the interactions between DNA and DndE during DNA phosphorothioation.

FEBS Lett

State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.

Published: October 2019

The DNA phosphorothioate modification is a novel physiological variation in bacteria. DndE controls this modification by binding to dsDNA via a mechanism that remains unclear. Structural analysis of the wild-type DndE tetramer suggests that a positively charged region in its center is important for DNA binding. In the present study, we replaced residues G21 and G24 in this region with lysines, which increases the DNA binding affinity but does not affect the DNA degradation phenotype. Structural analysis of the mutant indicates that it forms a new tetrameric conformation and that DndE interacts with DNA as a monomer rather than as a tetramer. A structural model of the DndE-DNA complex, based on its structural homolog P22 Arc repressor, indicates that two flexible loops in DndE are determinants of DNA binding.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1873-3468.13529DOI Listing

Publication Analysis

Top Keywords

dna binding
12
dna
8
structural analysis
8
dnde
5
investigating interactions
4
interactions dna
4
dna dnde
4
dnde dna
4
dna phosphorothioation
4
phosphorothioation dna
4

Similar Publications

Gsx2 is a homeodomain transcription factor critical for development of the ventral telencephalon and hindbrain of the mouse. Loss of Gsx2 function results in severe basal ganglia dysgenesis as well as defects in the nucleus tractus solitarius (nTS) of the hindbrain together with respiratory failure at birth. De Mori et al.

View Article and Find Full Text PDF

Elusive modes of Foxp3 activity in versatile regulatory T cells.

Front Immunol

January 2025

Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States.

Foxp3-expressing CD4 regulatory T (Treg) cells play a crucial role in suppressing autoimmunity, tolerating food antigens and commensal microbiota, and maintaining tissue integrity. These multifaceted functions are guided by environmental cues through interconnected signaling pathways. Traditionally, Treg fate and function were believed to be statically determined by the forkhead box protein Foxp3 that directly binds to DNA.

View Article and Find Full Text PDF

is a Gram-negative oncobacterium that is associated with colorectal cancer. The molecular mechanisms utilized by to promote colorectal tumor development have largely focused on adhesin-mediated binding to the tumor tissue and on the pro-inflammatory capacity of . However, the exact manner in which promotes inflammation in the tumor microenvironment and subsequent tumor promotion remains underexplored.

View Article and Find Full Text PDF

Chloroplast State Transitions Modulate Nuclear Genome Stability via Cytokinin Signaling in Arabidopsis.

Mol Plant

January 2025

Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 People's Republic of China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, People's Republic of China. Electronic address:

Activities of the chloroplasts and nucleus are coordinated by retrograde signaling, which has crucial roles in plant development and environmental adaptation. However, the connection between chloroplast status and nuclear genome stability is not well understood. Chloroplast state transitions allow the plant to balance the absorption capacity of the photosystems in an environment in which the light quality was changing.

View Article and Find Full Text PDF

Grainyhead-like protein 3 homolog (GRHL3) has been identified as a top transcription factor associated with keratinization in lung squamous cell carcinoma (LUSC). We designed this study to elucidate the function of GRHL3 in radioresistance in LUSC and the mechanism involved. Transcriptome differences between radioresistant and parental cells were analyzed to identify the hub transcription factor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!