Background: Neurosteroids mediate stress signaling and have been implicated in the pathogenesis of post-traumatic stress disorder (PTSD) in both preclinical and clinical studies. Compared to controls, subjects with PTSD exhibit altered neurosteroid levels in peripheral blood and cerebrospinal fluid as well as hypoactivity in the medial orbital frontal cortex (mOFC). Therefore, the aim of this study was to compare neurosteroid levels in the mOFC of subjects with PTSD (n = 18) and controls (n = 35).
Methods: Gray matter was dissected from fresh-frozen mOFC, and levels of the neurosteroids pregnenolone, allopregnanolone, pregnanolone, epiallopregnanolone, epipregnanolone, tetrahydrodeoxycorticosterone, and androsterone were determined by gas chromatography - tandem mass spectrometry (GC/MS/MS).
Results: Analyses of unadjusted levels revealed that males with PTSD had significantly decreased levels of allopregnanolone ( = 0.03) compared to control males and females with PTSD had significantly increased levels of pregnenolone ( = 0.03) relative to control females. After controlling for age, postmortem interval, and smoking status, results showed that males with PTSD had significantly decreased levels of androsterone ( = 2.37, = 0.02) compared to control males and females with PTSD had significantly increased levels of pregnanolone ( = -2.25, = 0.03) relative to control females.
Conclusions: To our knowledge, this is the first report of neurosteroid levels in postmortem brain tissue of subjects with PTSD. Although replication is required in other brain regions and in a larger cohort of subjects, the results suggest a dysregulation of allopregnanolone and androsterone in males with PTSD and pregnanolone in females with PTSD in the mOFC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6604657 | PMC |
http://dx.doi.org/10.1177/2470547019838570 | DOI Listing |
Q Rev Biophys
January 2025
Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland.
The GABA type A receptor (GABAR) belongs to the family of pentameric ligand-gated ion channels and plays a key role in inhibition in adult mammalian brains. Dysfunction of this macromolecule may lead to epilepsy, anxiety disorders, autism, depression, and schizophrenia. GABAR is also a target for multiple physiologically and clinically relevant modulators, such as benzodiazepines (BDZs), general anesthetics, and neurosteroids.
View Article and Find Full Text PDFKorean J Physiol Pharmacol
January 2025
Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung 25601, Korea.
Neurosteroids play an important role as endogenous neuromodulators that are locally produced in the central nervous system and rapidly change the excitability of neurons and the activation of microglial cells and astrocytes. Here we review the mechanisms of synthesis, metabolism, and actions of neurosteroids in the central nervous system. Neurosteroids are able to play a variety of roles in the central nervous system under physiological conditions by binding to membrane ion channels and receptors such as gamma-aminobutyric acid type A receptors, Nmethyl- D-aspartate receptors, L- and T-type calcium channels, and sigma-1 receptors.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy.
An aberrant pro-inflammatory microglia response has been associated with most neurodegenerative disorders. Identifying microglia druggable checkpoints to restore their physiological functions is an emerging challenge. Recent data have shown that microglia produce de novo neurosteroids, endogenous molecules exerting potent anti-inflammatory activity.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Zebrafish Translational Medical Research Center, Korea University, Ansan, Gyeonggi-do, Republic of Korea; Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea. Electronic address:
Citronellol is widely utilized in consumer products, including cosmetics, fragrances, and household items. However, despite being considered a relatively safe chemical, the health effects and toxicity mechanisms associated with exposure to high concentrations of citronellol, based on product content, remain inadequately understood. Here, we aimed to analyze the neurological effects of citronellol in zebrafish larvae using behavioral and histological analyses and elucidate the mechanisms underlying its neurotoxicity in vivo.
View Article and Find Full Text PDFNeuropharmacology
December 2024
Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany. Electronic address:
The treatment of stress-related disorders such as anxiety and depression is still challenging. One potential therapeutical option are neurosteroids. Their synthesis is promoted by ligands of the mitochondrial translocator protein 18 kDa (TSPO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!