A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Active Vitamin D and Vitamin D Receptor Help Prevent High Glucose Induced Oxidative Stress of Renal Tubular Cells via AKT/UCP2 Signaling Pathway. | LitMetric

Background: It has been documented that vitamin D supplementation showed an improvement of symptoms of diabetic nephropathy; however, the underlying mechanisms remain unknown. We here tested the hypothesis that active vitamin D is able to up-regulate AKT/UCP2 signaling to alleviate oxidative stress of renal tubular cell line HK2.

Methods: There are eight groups in the present study: normal glucose, osmotic control (5.5 mmol/L D-glucose+24.5 mmol/L D-mannitol), NAC control (30 mmol/L D-glucose + 1.0 mmol/L N-Methylcysteine), high glucose, high glucose+VD, high glucose (HG)+VD+siVDR, HG+VD+AKT inhibitor (AI), and high glucose+VD+UCP2 inhibitor (Gelipin). Concentration of superoxide dismutase (SOD) and malondialdehyde (MDA) was analyzed by ELISA. Reactive oxygen species (ROS), mitochondrial membrane potential and apoptosis were measured by flow cytometry. JC-1 was evaluated by flow cytometry. The presence of VDR, AKT, and UCP2 in HK cells was assessed using RT-PCR and western blot analyses.

Results: VD administration significantly upregulated the SOD activation and downregulated MDA levels compared to HG group. siVDR, AKT inhibitor, and UCP2 inhibitor significantly suppressed the activation of SOD and increased the expression of MDA compared to VD group. ROS generation and apoptosis of HK2 cells in HG+VD group were significantly lower than those in HG, HG+VD+siVDR, HG+VD+AI, and HG+VD+Gelipin group. ΔΨm in HG+VD group was obviously higher than those in HG, HG+VD+siVDR, HG+VD+AI, and HG+VD+Gelipin group. Decreased mRNA and protein levels of VDR, p-AKT, and UCP2 were observed in HG+VD+siVDR, HG+VD+AI, and HG+VD+Gelipin group compared to those in HG+VD group.

Conclusions: siVDR, AKT inhibitor, and UCP2 inhibitor elevated the ROS and apoptosis of HK2 cells while attenuating the mitochondrial membrane potential, suggesting that vitamin D protects renal tubular cell from high glucose by AKT/UCP2 signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6558621PMC
http://dx.doi.org/10.1155/2019/9013904DOI Listing

Publication Analysis

Top Keywords

high glucose
16
renal tubular
12
akt/ucp2 signaling
12
hg+vd+sivdr hg+vd+ai
12
hg+vd+ai hg+vd+gelipin
12
hg+vd+gelipin group
12
active vitamin
8
oxidative stress
8
stress renal
8
signaling pathway
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!