Objectives: To determine if cochlear duct length and cochlear basal diameter, measured using routinely available radiology software, affect hearing outcomes after cochlear implantation with two different length electrodes.
Methods: 55 patients who received a Med-El Flex electrode were retrospectively reviewed. 34 patients received the Flex 31 electrode (31mm) and 21 patients received the Flex 28 electrode (28mm). Preoperative high-resolution CT scans of the temporal bone were reformatted in the axial and coronal plane. The basal diameter of the cochlear (A-value) and the outer-wall lengths of the cochlear duct were measured using readily available imaging software. Postoperative plane X-rays were used to determine the degree of electrode insertion and the number of electrodes within the cochlea and speech discrimination scores at 6 months were evaluated.
Results: The cochlear metrics obtained were comparable with those previously published in the literature. There was no significant difference in the degree of insertion or speech outcomes between the two electrode lengths. However, when the group who had received the shorter electrode were analysed, there was an association seen between both cochlear duct length and cochlear diameter and speech outcomes.
Conclusions: Cochlear size may be a factor in determining speech outcomes that cannot be explained solely by insertion depth or degrees of insertion. Further studies are required to determine if cochlear duct length is an independent predictor of speech outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582906 | PMC |
http://dx.doi.org/10.1155/2019/5849871 | DOI Listing |
Objectives: The movement towards personalization of cochlear implantation has continued to generate interest about variabilities in cochlear size. In a recent meta-analysis, Atalay et al. (2022) examined organ of corti length, cochlear lateral wall, and "A" value and found that most covariates, other than congenital sensorineural hearing loss, did not impact cochlear size via these measurements.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Biochemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
The inner ear is one of the sensory organs of vertebrates and is largely composed of the vestibule, which controls balance, and the cochlea, which is responsible for hearing. In particular, a problem in cochlear development can lead to hearing loss. Although numerous studies have been conducted on genes involved in the development of the cochlea, many areas still need to be discovered regarding factors that control the patterning of the early cochlear duct.
View Article and Find Full Text PDFFront Oncol
November 2024
Department of Otolaryngology Head and Neck Surgery, Medical University of Lublin, Lublin, Poland.
Introduction: Endolymphatic sac tumors (ELSTs) are rare neuroectodermal neoplasms that originate in the endolymphatic sac and duct. They exhibit no specific age or gender predilection, although they are more prevalent in patients with von Hippel-Lindau syndrome.
Material And Methods: The manuscript preparation adhered to the CARE guidelines for standardizing clinical cases and the PRISMA guidelines for scientific reviews.
Laryngoscope
November 2024
Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A.
Objectives: To examine the effects of scala tympani (ST) volume, cochlear duct length (CDL), and angular insertion depth (AID) on low-frequency hearing preservation for cochlear implant (CI) recipients of lateral wall electrode arrays.
Methods: A retrospective review identified 45 adult CI recipients of 24-, 28-, or 31.5-mm lateral wall electrode arrays with preoperative unaided hearing thresholds ≤45 decibel hearing level (dB HL) at 250 Hz.
Sci Rep
November 2024
Research and Development, MED-EL, Innsbruck, Austria.
Estimation of cochlear length is gaining attention in the field of cochlear implants (CIs), mainly for selecting of CI electrode lengths. The currently available tools to estimate the cochlear duct length (CDL) are only valid for normal inner anatomy. However, inner ear malformation (IEM) types are associated with different degrees of cystic apices, limiting the application of CDL equations of normal anatomy inner ear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!