An effective vaccine against the parasite is likely to require the induction of robust antibody and T cell responses. Chimeric virus-like particles are an effective vaccine platform for induction of antibody responses, but their capacity to induce robust cellular responses and cell-mediated protection against pathogen challenge has not been established. To evaluate this, we produced chimeric constructs using the murine polyomavirus structural protein with surface-exposed CD8 or CD4 T cell or B cell repeat epitopes derived from the circumsporozoite protein, and assessed immunogenicity and protective capacity in a murine model. Robust CD8 T cell responses were induced by immunization with the chimeric CD8 T cell epitope virus-like particles, however CD4 T cell responses were very low. The B cell chimeric construct induced robust antibody responses but there was no apparent synergy when T cell and B cell constructs were administered as a pool. A heterologous prime/boost regimen using plasmid DNA priming followed by a VLP boost was more effective than homologous VLP immunization for cellular immunity and protection. These data show that chimeric murine polyomavirus virus-like particles are a good platform for induction of CD8 T cell responses as well as antibody responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6593135PMC
http://dx.doi.org/10.3389/fcimb.2019.00215DOI Listing

Publication Analysis

Top Keywords

virus-like particles
16
cd8 cell
16
antibody responses
16
cell responses
16
murine polyomavirus
12
cell
11
responses
9
chimeric murine
8
polyomavirus virus-like
8
effective vaccine
8

Similar Publications

Exploring the druggability of the UEV domain of human TSG101 in search for broad-spectrum antivirals.

Protein Sci

January 2025

Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain.

The ubiquitin E2 variant domain of TSG101 (TSG101-UEV) plays a pivotal role in protein sorting and virus budding by recognizing PTAP motifs within ubiquitinated proteins. Disruption of TSG101-UEV/PTAP interactions has emerged as a promising strategy for the development of host-oriented broad-spectrum antivirals with low susceptibility to resistance. TSG101 is a challenging target characterized by an extended and flat binding interface, low affinity for PTAP ligands, and complex binding energetics.

View Article and Find Full Text PDF

Dual-Stage Cross-Flow Filtration: Integrated Capture and Purification of Virus-Like Particles.

Biotechnol Bioeng

December 2024

Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.

Virus-like particles (VLPs) are a versatile technology for the targeted delivery of genetic material through packaging and potential surface modifications for directed delivery or immunological issues. Although VLP production is relatively simple as they can be recombinantly produced using microorganisms such as Escherichia coli, their current downstream processing often relies on individually developed purification strategies. Integrating size-selective separation techniques may allow standardized platform processing across VLP purification.

View Article and Find Full Text PDF

Design and evaluation of a multi-epitope HIV-1 vaccine based on human parvovirus virus-like particles.

Vaccine

December 2024

Mucosal Immunoogy Laboratory, Biomedicine Research Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico. Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México 54090, Mexico. Electronic address:

The development of a protective HIV vaccine remains a challenge given the high antigenic diversity and mutational rate of the virus, which leads to viral escape and establishment of reservoirs in the host. Modern antigen design can guide immune responses towards conserved sites, consensus sequences or normally subdominant epitopes, thus enabling the development of broadly neutralizing antibodies and polyfunctional lymphocyte responses. Conventional epitope vaccines can often be impaired by low immunogenicity, a limitation that may be overcome by using a carrier system.

View Article and Find Full Text PDF

Background: LYB001 is a recombinant protein COVID-19 vaccine displaying a receptor-binding domain (RBD) in a highly immunogenic array on virus-like particles (VLPs). This study assessed the immunogenicity and safety of LYB001 as a booster.

Research Design And Methods: In this randomized, active-controlled, double-blinded, phase 3 trial, participants aged ≥18 years received a booster with LYB001 or ZF2001 (Recombinant COVID-19 Vaccine).

View Article and Find Full Text PDF

Production of virus-like particles of FMDV by 3C protease cleaving precursor polyprotein P1 in vitro.

Appl Microbiol Biotechnol

December 2024

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.

Nonstructural protein 3C, a master protease of Picornaviridae, plays a critical role in viral replication by directly cleaving the viral precursor polyprotein to form the viral capsid protein and antagonizing the host antiviral response. Additionally, 3C protease, as a tool enzyme, is involved in regulating polyprotein expression. Here, the 3C mutant gene (3Cm), fused with a small ubiquitin-like modifier (SUMO) tag at the N-terminal and featuring a mutation at position 127, was inserted into the cold-shock plasmid pCold of Escherichia coli for expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!