AI Article Synopsis

  • Exosomes are tiny bubbles released by all kinds of cells and they help cells communicate with each other.
  • Recent research is focused on how exosomes are connected to colorectal cancer (CRC) and how they affect the tumor environment and the immune system.
  • Scientists believe exosomes could be helpful for new cancer tests and treatments, but more research is needed before they can be used in hospitals.

Article Abstract

Exosomes (Exos) are nano-sized extracellular vesicles constitutively released by both prokaryotic and eukaryotic cells. Their role as inter-cellular messengers involved in both physiological and pathological processes has overwhelmingly come to light in the last decade, and their contribution to cancerogenesis and tumor metastasis is under intensive investigation. Here we review the most recent information concerning Exos in colorectal cancer (CRC) and focus on their effects on tumor microenvironment and the immune system, as well as unravel their role in the formation of the pre-metastatic niche and in drug resistance. Such a recent knowledge on Exos depicts their potential translations into the clinical arena, either as an alternative tool of "liquid biopsy" or novel therapeutic approaches for CRC. However, due to the limited data available from clinical trials, they need further validations before addressing their putative application in oncology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6593071PMC
http://dx.doi.org/10.3389/fonc.2019.00521DOI Listing

Publication Analysis

Top Keywords

colorectal cancer
8
revisiting role
4
role exosomes
4
exosomes colorectal
4
cancer exosomes
4
exosomes exos
4
exos nano-sized
4
nano-sized extracellular
4
extracellular vesicles
4
vesicles constitutively
4

Similar Publications

KRAS is a proto-oncogene that is found to be mutated in 15% of all metastatic cancers with high prevalence in pancreatic, lung, and colorectal cancers. Additionally, patients harboring KRAS mutations respond poorly to standard cancer therapy. As a result, KRAS is seen as an attractive target for targeted anticancer therapy.

View Article and Find Full Text PDF

Early cancer detection substantially improves the rate of patient survival; however, conventional screening methods are directed at single anatomical sites and focus primarily on a limited number of cancers, such as gastric, colorectal, lung, breast, and cervical cancer. Additionally, several cancers are inadequately screened, hindering early detection of 45.5% cases.

View Article and Find Full Text PDF

This study evaluated the antioxidant and antiproliferative effects of aqueous, ethanolic and methanolic extracts of Sedum nicaeense flowers and leaves. The MTT assay assessed cytotoxicity against colorectal cancer cells (Caco-2, HCT-116), breast cancer cells (T47D, MCF-7) and normal fibroblasts (MRC-5), while the ferric-reducing antioxidant power (FRAP) assay measured antioxidant capacity. Essential oils from flowers and leaves were analyzed using gas chromatography-mass spectrometry (GC-MS).

View Article and Find Full Text PDF

Atractylenolide I (ATL-I) can interfere with Colorectal cancer (CRC) cell proliferation by changing apoptosis, glucose metabolism and other behaviors, making it an effective drug for inhibiting CRC tumor growth. In this paper, we investigated the interactions between ATL-I and Keratin 7 (KRT7), a CRC-specific marker, to determine the potential pathways by which ATL-I inhibits CRC development. The KRT7 expression level in CRC was predicted online using the GEPIA website and then validated.

View Article and Find Full Text PDF

Targeting KRAS: from metabolic regulation to cancer treatment.

Mol Cancer

January 2025

Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, 100191, China.

The Kirsten rat sarcoma viral oncogene homolog (KRAS) protein plays a key pathogenic role in oncogenesis, cancer progression, and metastasis. Numerous studies have explored the role of metabolic alterations in KRAS-driven cancers, providing a scientific rationale for targeting metabolism in cancer treatment. The development of KRAS-specific inhibitors has also garnered considerable attention, partly due to the challenge of acquired treatment resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!