Greenhouse gas emissions mitigation requires understanding the dominant processes controlling fluxes of these trace gases at increasingly finer spatial and temporal scales. Trace gas fluxes can be estimated using a variety of approaches that translate observed atmospheric species mole fractions into fluxes or emission rates, often identifying the spatial and temporal characteristics of the emission sources as well. Meteorological models are commonly combined with tracer dispersion models to estimate fluxes using an inverse approach that optimizes emissions to best fit the trace gas mole fraction observations. One way to evaluate the accuracy of atmospheric flux estimation methods is to compare results from independent methods, including approaches in which different meteorological and tracer dispersion models are used. In this work, we use a rich data set of atmospheric methane observations collected during an intensive airborne campaign to compare different methane emissions estimates from the Barnett Shale oil and natural gas production basin in Texas, USA. We estimate emissions based on a variety of different meteorological and dispersion models. Previous estimates of methane emissions from this region relied on a simple model (a mass balance analysis) as well as on ground-based measurements and statistical data analysis (an inventory). We find that in addition to meteorological model choice, the choice of tracer dispersion model also has a significant impact on the predicted down-wind methane concentrations given the same emissions field. The dispersion models tested often underpredicted the observed methane enhancements with significant variability (up to a factor of 3) between different models and between different days. We examine possible causes for this result and find that the models differ in their simulation of vertical dispersion, indicating that additional work is needed to evaluate and improve vertical mixing in the tracer dispersion models commonly used in regional trace gas flux inversions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6605086 | PMC |
http://dx.doi.org/10.5194/acp-19-2561-2019 | DOI Listing |
Ecol Evol
January 2025
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems Potsdam Germany.
Mountains with complex terrain and steep environmental gradients are biodiversity hotspots such as the eastern Tibetan Plateau (TP). However, it is generally assumed that mountain terrain plays a secondary role in plant species assembly on a millennial time-scale compared to climate change. Here, we investigate plant richness and community changes during the last 18,000 years at two sites: Lake Naleng and Lake Ximen on the eastern TP with similar elevation and climatic conditions but contrasting terrain.
View Article and Find Full Text PDFEcol Evol
January 2025
Instituto Milenio de Oceanografía (IMO) Universidad de Concepción Concepción Chile.
Mechanisms driving the spatial and temporal patterns of species distribution in the Earth's largest habitat, the deep ocean, remain largely enigmatic. The late Miocene to the Pliocene (~23-2.58 Ma) is a period that was marked by significant geological, climatic, and oceanographic changes.
View Article and Find Full Text PDFBioact Mater
April 2025
Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
Injectable biomaterials, such as thermosensitive chitosan (CH)-based hydrogels, present a highly translational potential in dentistry due to their minimally invasive application, adaptability to irregular defects/shapes, and ability to carry therapeutic drugs. This work explores the incorporation of azithromycin (AZI) into thermosensitive CH hydrogels for use as an intracanal medication in regenerative endodontic procedures (REPs). The morphological and chemical characteristics of the hydrogel were assessed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR).
View Article and Find Full Text PDFPharm Res
January 2025
Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
Improving the bioavailability of poorly water-soluble drugs presents a significant challenge in pharmaceutical development. Amorphous solid dispersions (ASDs) have garnered substantial attention for their capability to augment the solubility and dissolution rate of poorly water-soluble drugs, thereby markedly enhancing their bioavailability. ASDs, characterized by a metastable equilibrium where the active pharmaceutical ingredient (API) is molecularly dispersed, offer enhanced absorption compared to crystalline forms.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Chemical Department, Faculty of Science, Damietta University, Damietta 34517, Egypt.
The study investigated the enhancement of stability and efficacy in the removal of bivalent nickel ions (Ni(II)) by utilizing a cerium metal-organic framework (Ce-MOF) encapsulated within a food-grade algal matrix. This composite material is integrated into a dual-layer hydrogel containing chitosan and carboxymethyl cellulose. The enhancement of structural integrity in the final product can be attributed to the cross-linking process with epichlorohydrin, leading to the development of Ce-MOF-FGA/CMC-CS hydrogel beads.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!