Genome-Wide Signatures of Selection in Reveal Candidate Genes Potentially Involved in Pathogenicity and Aggressiveness.

Front Microbiol

Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal.

Published: June 2019

Plants and their pathogens are engaged in continuous evolutionary battles, with pathogens evolving to circumvent plant defense mechanisms and plants responding through enhanced protection to prevent or mitigate damage induced by pathogen attack. Managed ecosystems are composed of genetically identical populations of crop plants with few changes from year to year. These environments are highly conducive to the emergence and dissemination of pathogens and they exert selective pressure for both qualitative virulence factors responsible for fungal pathogenicity, and quantitative traits linked to pathogen fitness, such as aggressiveness. In this study, we used a comparative genome-wide approach to investigate the genomic basis underlying the pathogenicity and aggressiveness of the fungal coffee pathogen infecting green coffee berries. The pathogenicity was investigated by comparing genomic variation between and its non-pathogenic sibling species, while the aggressiveness was studied by a genome-wide association approach with groups of isolates with different phenotypic profiles. High genetic differentiation was observed between and the most closely related species with 5,560 diagnostic SNPs identified, in which a significant enrichment of non-synonymous mutations was detected. Functional annotation of these non-synonymous mutations revealed a significant enrichment mainly in two gene ontology categories, "oxidation-reduction process" and "integral component of membrane." Finally, the annotation of several genes potentially under-selection revealed that pathogenicity may be a complex biological process, in which important biological functions, such as, detoxification and transport, regulation of host and pathogen gene expression, and signaling are involved. On the other hand, the genome-wide association analyses for aggressiveness were able to identify 10 SNPs and 15 SNPs of small effect in single and multi-association analysis, respectively, from which 7 were common, giving in total 18 SNPs potentially associated. The annotation of these genomic regions allowed the identification of four candidate genes encoding F-box domain-containing, nitrosoguanidine resistance, Fungal specific transcription factor domain-containing and C6 transcription factor that could be associated with aggressiveness. This study shed light, for the first time, on the genetic mechanisms of host specialization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6593080PMC
http://dx.doi.org/10.3389/fmicb.2019.01374DOI Listing

Publication Analysis

Top Keywords

candidate genes
8
pathogenicity aggressiveness
8
aggressiveness study
8
genome-wide association
8
non-synonymous mutations
8
transcription factor
8
aggressiveness
6
pathogenicity
5
genome-wide
4
genome-wide signatures
4

Similar Publications

Introduction: Chinese kale ( var. alboglabra), is an annual herb belonging to the Brassica genus of Cruciferae, and is one of the famous specialty vegetables of southern China. Some varieties show bright green leaf (BGL) traits and have better commerciality.

View Article and Find Full Text PDF

While most pregnancies are affected by nausea and vomiting, hyperemesis gravidarum (HG) is at the severe end of the clinical spectrum and is associated with dehydration, undernutrition, and adverse maternal, fetal, and child outcomes. Herein we performed a multi-ancestry genome-wide association study (GWAS) of severe nausea and vomiting of pregnancy of 10,974 cases and 461,461 controls across European, Asian, African, and Latino ancestries. We identified ten significantly associated loci, of which six were novel ( , , , , , and and confirmed previous genome-wide significant associations with risk genes , , , and .

View Article and Find Full Text PDF

The activation of progenitor cells near wound sites is a common feature of regeneration across species, but the conserved signaling mechanisms responsible for this step in whole-body regeneration are still incompletely understood. The acoel undergoes whole-body regeneration using Piwi+ pluripotent adult stem cells (neoblasts) that accumulate at amputation sites early in the regeneration process. The EGFR signaling pathway has broad roles in controlling proliferation, migration, differentiation, and cell survival across metazoans.

View Article and Find Full Text PDF

Citrin Deficiency (CD) is caused by inactivation of SLC25A13, a mitochondrial membrane protein required to move electrons from cytosolic NADH to the mitochondrial matrix in hepatocytes. People with CD do not like sweets. We discovered that SLC25A13 loss causes accumulation of glycerol-3-phosphate (G3P), which activates carbohydrate response element binding protein (ChREBP) to transcribe FGF21, which acts in the brain to restrain intake of sweets and alcohol, and to transcribe key genes of lipogenesis.

View Article and Find Full Text PDF

Mouse embryonic stem cells (mESCs) and other naïve pluripotent stem cells can reverse typical developmental trajectories and, at low frequency, de-differentiate into 2-cell-like cells (2CLCs) that resemble the mammalian embryo during zygotic genome activation (ZGA). This affords the opportunity to reveal molecular principles that govern the pre-implantation stages of mammalian development. We leveraged a multipurpose allele for acute protein depletion and efficient immunoprecipitation to dissect the molecular functions of the chromatin repressor EHMT2, a candidate antagonist of the mESC-to-2CLC transition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!