Prolonged pulsatile administration of Levodopa (L-dopa) can generate L-dopa-induced dyskinesia (LID). Numerous research has reported that continuous dopamine delivery (CDD) was useful in reducing the severity of LID. 6-OHDA lesioned rats were divided into two groups to receive intermittent L-dopa stimulation (L-dopa/benserazide) or Levodopa/benserazide PLGA microsphere (LBPM) for 3 weeks. rAAV (recombinant adeno-associated virus) vector was used to overexpress and ablation of β-arrestin2. We found that LBPM developed less AIM severity compared with standard L-dopa administration, whereas selective deletion of β-arrestin2 in striatum neurons dramatically enhanced the severity of dyskinesia by LBPM. On the contrary, the effects of LBPM in terms of ALO AIM were further relieved by β-arrestin2 overexpression. Furthermore, no significant change in motor behavior was seen either in inhibition or overexpression of β-arrestin2. In short, our experiments provided evidence that LBPM's prevention of LID behavior was likely due to β-arrestin2, suggesting that a therapy modulating β-arrestin2 may offer a more efficient anti-dyskinetic method with a low risk of untoward effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6593297PMC
http://dx.doi.org/10.3389/fphar.2019.00660DOI Listing

Publication Analysis

Top Keywords

levodopa/benserazide plga
8
plga microsphere
8
l-dopa-induced dyskinesia
8
β-arrestin2
7
microsphere prevents
4
prevents l-dopa-induced
4
dyskinesia lower
4
lower β-arrestin2
4
β-arrestin2 6-hydroxydopamine
4
6-hydroxydopamine parkinson's
4

Similar Publications

Prolonged pulsatile administration of Levodopa (L-dopa) can generate L-dopa-induced dyskinesia (LID). Numerous research has reported that continuous dopamine delivery (CDD) was useful in reducing the severity of LID. 6-OHDA lesioned rats were divided into two groups to receive intermittent L-dopa stimulation (L-dopa/benserazide) or Levodopa/benserazide PLGA microsphere (LBPM) for 3 weeks.

View Article and Find Full Text PDF

L-3, 4-dihydroxyphenylalanine (L-dopa) is the gold standard for symptomatic treatment of Parkinson's disease (PD), but long-term therapy is associated with the emergence of L-dopa-induced dyskinesia (LID). In the present study, L-dopa and benserazide were loaded by poly (lactic-co-glycolic acid) microspheres (LBM), which can release levodopa and benserazide in a sustained manner in order to continuous stimulate dopaminergic receptors. We investigated the role of striatal DR1/PKA/P-tau signal transduction in the molecular event underlying LID in the 6-OHDA-lesioned rat model of PD.

View Article and Find Full Text PDF

Background: Levodopa is the gold standard in the treatment of Parkinson's disease (PD). However, long-term levodopa replacement therapy is accompanied by abnormal involuntary movements (AIMs), known as levodopa-induced dyskinesia (LID). Until now, the precise mechanisms of LID were only partially understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!