miR-3188, one of the earliest discovered microRNAs, is involved in regulating the mTOR-p-PI3K/AKT pathway, thus affecting the progression of diabetic complications. In this study, we observed that the miR-3188 (rs7247237-C>T) polymorphism not only affected the production of nitric oxide (NO) production in endothelial cells, but also significantly associated with the incidence of vascular complications in Chinese patients with type 2 diabetes. Mechanistic analyses indicate that miR-3188 (rs7247237-T) polymorphism inhibited its own expression and upregulated the expression of gstm1 and trib3, which impairs NO production in human endothelial cells through inactivating AKT/eNOS signal transduction pathway. In addition, our clinical retrospective study indicated that, compared with patients with the CC genotype (n = 351), patients with rs7247237 TT + CT genotypes (n = 580) exhibited an increased risk of major vascular events during intensive glucose control treatment (hazard ratio = 1.560; 95% CI: 1.055-2.307, P = 0.025). Simultaneously, the risk of major vascular events was marginally decreased in patients with the CC genotype during intensive glucose control treatment compared with standard treatment (hazard ratio = 0.666; 95% CI: 0.433-1.016, P = 0.053). Our findings indicate that the miR-3188 (rs7247237-C>T) polymorphism is associated with the incidence of vascular complications in Chinese patients with type 2 diabetes, likely due to its remarkable effect on miR-3188 expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/FJC.0000000000000681 | DOI Listing |
J Cardiovasc Pharmacol
July 2019
Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.
miR-3188, one of the earliest discovered microRNAs, is involved in regulating the mTOR-p-PI3K/AKT pathway, thus affecting the progression of diabetic complications. In this study, we observed that the miR-3188 (rs7247237-C>T) polymorphism not only affected the production of nitric oxide (NO) production in endothelial cells, but also significantly associated with the incidence of vascular complications in Chinese patients with type 2 diabetes. Mechanistic analyses indicate that miR-3188 (rs7247237-T) polymorphism inhibited its own expression and upregulated the expression of gstm1 and trib3, which impairs NO production in human endothelial cells through inactivating AKT/eNOS signal transduction pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!