Background: Endodontic sealers are essential for sealing gutta-percha to the dentin walls. They help to ensure that the canal remains free of microorganisms which might lead to infection. In order to perform their intended function, the sealers should properly adhere to the dentin walls and remain insoluble when set in the canal.

Objectives: The purpose of this study was to evaluate the bond strength and solubility of a novel polydimethylsiloxane-gutta-percha calcium silicate-containing root canal sealer (GuttaFlow® bioseal) and compare it with the zinc oxide and eugenol sealer (Zical®).

Material And Methods: The endodontic sealers used in this study were GuttaFlow bioseal and Zical. The bond strength was assessed using push-out bond strength test in 3 root segments: coronal, middle and apical. The solubility was tested according to the American National Standards Institute / American Dental Association (ANSI/ADA) specification No. 57 at 3 different time intervals: 1, 7 and 14 days.

Results: The push-out bond strength in all root segments was significantly higher in Zical compared to GuttaFlow bioseal. The solubility was significantly higher on day 1 and 7 in Zical compared to GuttaFlow bioseal, and on day 14, the difference between them was not significant.

Conclusions: Within the limitations of this study, the endodontic sealer GuttaFlow bioseal showed low bond strength values compared to Zical. The solubility of the set GuttaFlow bioseal and Zical were both within the recommended ANSI/ADA levels.

Download full-text PDF

Source
http://dx.doi.org/10.17219/dmp/105626DOI Listing

Publication Analysis

Top Keywords

bond strength
24
guttaflow bioseal
20
strength solubility
8
solubility novel
8
novel polydimethylsiloxane-gutta-percha
8
polydimethylsiloxane-gutta-percha calcium
8
calcium silicate-containing
8
silicate-containing root
8
root canal
8
canal sealer
8

Similar Publications

Self-healing optically transparent polyimides have potential applications in optoelectronic device fabrication. In this study, for the first time, we successfully prepared a novel self-healing polyimide film containing reversible disulfide bonds through chemical imidization by introducing cystamine as a self-healing functional monomer into the molecular structure of conventional polyimides. The incorporation of cystamine enabled the films to maintain high transmittance (>87%) and tensile strength (>99 MPa).

View Article and Find Full Text PDF

The structural adhesive bonding of aluminum is widely used in the aircraft and automotive industries. The surface preparation of aluminum prior to adhesive bonding plays a significant role in improving the bonding strength. Surface cleanliness, surface roughness, and surface chemistry can be controlled, primarily, by proper surface treatment methods.

View Article and Find Full Text PDF

In the work presented here, we explore the upcycling of polyethylene terephthalate (PET) that was derived from water bottles. The material was granulated and extruded into a filament compatible with fused filament fabrication (FFF) additive manufacturing platforms. Three iterations of PET combined with a thermoplastic elastomer, styrene ethylene butylene styrene with a maleic anhydride graft (SEBS-g-MA), were made with 5, 10, and 20% by mass elastomer content.

View Article and Find Full Text PDF

(1) Background: Alkasite is a novel restorative material that has attracted interest in recent years because of its distinctive characteristics, including its high translucency and excellent biocompatibility. It is comparable to glass ionomer cement (GIC) and resin-modified glass ionomer cement (RMGIC) due to its fluoride-release ability and usage in esthetically concerned areas. This study aimed to assess the shear bond strength (SBS) of Alkasite restorative material in comparison with GIC and RMGIC (2) Methods: The study sample included 120 extracted sound primary molars and was randomly split into three groups, including group 1: RMGIC; group 2: Alkasite; and group 3: GIC.

View Article and Find Full Text PDF

Interaction Between Concrete and FRP Laminate in Structural Members Composed of Reused Wind Turbine Blades Filled with Concrete.

Materials (Basel)

December 2024

Department of Building Structures and Structural Mechanics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland.

The lifecycle of wind turbine blades is around 20-25 years. This makes studies on the reuse of dismantled blades an urgent need for our generation; however, their recycling is very difficult due to the specific makeup of their composite material. In this study, the authors determined a concept for the reuse of turbine blade sections filled with concrete for geotechnical structures, retaining the walls, piles, or parts of their foundations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!