Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Medicinal plants have been studied for potential endophytic interactions and numerous studies have provided evidence that seeds harbor diverse microbial communities, not only on their surfaces but also within the embryo. Adenosine deaminase (ADA) is known as a potential therapeutic target for the treatment of lymphoproliferative disorders and cancer. Therefore, in this study, 20 types of medicinal plant seeds were used to screen endophytic fungi with tissue homogenate and streak. In addition, 128 morphologically distinct endophyte strains were isolated and their ADA inhibitory activity determined by a spectrophotometric assay. The strain with the highest inhibitory activity was identified as Cochliobolus sp. Seven compounds were isolated from the strain using a chromatography method. Compound 3 showed the highest ADA inhibitory activity and was identified as 5-hydroxy-2-hydroxymethyl-4H-pyran-4-one, based on the results of 1H and 13C NMR spectroscopy. The results of molecular docking suggested that compound 3 binds to the active site and the nonspecific binding site of the ADA. Furthermore, we found that compound 3 is a mixed ADA inhibitor. These results indicate that endophytic strains are a promising source of ADA inhibitors and that compound 3 may be a superior source for use in the preparation of biologically active ADA inhibitor compounds used to treat cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12223-019-00723-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!