Introduction: Despite extensive prevention campaigns and scale-up of antiretroviral therapy, HIV incidence among young women in southern Africa remains high. While the development of an efficacious vaccine remains a challenge, the discovery of broadly neutralising monoclonal antibodies (mAbs) has created the opportunity to explore passive immunisation as a long-acting injectable HIV prevention strategy. The purpose of this trial is to provide safety, pharmacokinetic (PK) and functional activity data of VRC07-523LS and PGT121 when administered subcutaneously (SC) to young South African women. Going forward, the aim is to select the ideal dose and/or monoclonal antibody for co-formulation and testing with CAP256-VRC26.25LS, a potent monoclonal antibody against subtype C virus, in an efficacy trial.
Methods And Analysis: CAPRISA 012A is a randomised, double blinded, placebo-controlled phase I trial to assess the safety and PK profile of two mAbs, VRC07-523LS and PGT121 administered SC to 35 young HIV negative women at low risk for HIV infection. Women will be randomised into seven groups of five participants each. In each group, women will be randomised (4:1) to the active intervention, VRC07-523LS and/or PGT121, or placebo. Participants will be followed up for 24 weeks after the administration of the last dose of study product with a total study duration of 72 weeks. Safety in the study will be assessed by the number and percentage of reactogenicity and adverse events experienced by participants and the relatedness to study product. The PK study design was based on preliminary PK data for VRC07-523LS and PGT121.
Ethics And Dissemination: Ethical approval has been granted by the South African Health Products Regulatory Authority and by the University of KwaZulu-Natal Biomedical Research Ethics Committee. Results will be presented at international conferences and published in academic peer-reviewed journals. Trial results will be uploaded on the clinical trial registry.
Trial Registration Number: PACTR201808919297244; Pre-results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6615816 | PMC |
http://dx.doi.org/10.1136/bmjopen-2019-030283 | DOI Listing |
Lancet HIV
January 2025
Duke University Medical Center, Durham, NC, USA.
Background: Multiple broadly neutralising monoclonal antibodies (mAbs) are in development for HIV-1 prevention. The aim of this trial was to test the PGT121.414.
View Article and Find Full Text PDFNat Med
December 2024
Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
Human immunodeficiency virus type 1 (HIV-1)-specific broadly neutralizing monoclonal antibodies (bNAbs) have to date shown transient viral suppression when administered as monotherapy or as a cocktail of two antibodies. A combination of three bNAbs provides improved neutralization coverage of global viruses, which may more potently suppress viral escape and rebound. Here we performed an open-label, two-part study evaluating a single intravenous dose of HIV-1 bNAbs, PGT121, PGDM1400 and VRC07-523LS, in six adults without HIV in part 1 and a multicenter trial of up to six monthly infusions of these three bNAbs in 12 people living with HIV with an antiretroviral therapy (ART) interruption in part 2.
View Article and Find Full Text PDFPharmaceutics
April 2024
Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
Monoclonal antibodies are commonly engineered with an introduction of Met428Leu and Asn434Ser, known as the LS mutation, in the fragment crystallizable region to improve pharmacokinetic profiles. The LS mutation delays antibody clearance by enhancing binding affinity to the neonatal fragment crystallizable receptor found on endothelial cells. To characterize the LS mutation for monoclonal antibodies targeting HIV, we compared pharmacokinetic parameters between parental versus LS variants for five pairs of anti-HIV immunoglobin G1 monoclonal antibodies (VRC01/LS/VRC07-523LS, 3BNC117/LS, PGDM1400/LS PGT121/LS, 10-1074/LS), analyzing data from 16 clinical trials of 583 participants without HIV.
View Article and Find Full Text PDFLancet HIV
October 2023
Duke University School of Medicine, Durham, NC, USA.
Background: Preclinical and clinical studies suggest that combinations of broadly neutralising antibodies (bnAbs) targeting different HIV envelope epitopes might be required for sufficient prevention of infection. We aimed to evaluate the dual and triple anti-HIV bnAb combinations of PGDM1400 (V2 Apex), PGT121 (V3 glycan), 10-1074 (V3 glycan), and VRC07-523LS (CD4 binding site).
Methods: In this phase 1 trial (HVTN 130/HPTN 089), adults without HIV were randomly assigned (1:1:1) to three dual-bnAb treatment groups simultaneously, or the triple-bnAb group, receiving 20 mg/kg of each antibody administered intravenously at four centres in the USA.
PLoS Pathog
June 2023
National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.
The VRC01 Antibody Mediated Prevention (AMP) efficacy trials conducted between 2016 and 2020 showed for the first time that passively administered broadly neutralizing antibodies (bnAbs) could prevent HIV-1 acquisition against bnAb-sensitive viruses. HIV-1 viruses isolated from AMP participants who acquired infection during the study in the sub-Saharan African (HVTN 703/HPTN 081) and the Americas/European (HVTN 704/HPTN 085) trials represent a panel of currently circulating strains of HIV-1 and offer a unique opportunity to investigate the sensitivity of the virus to broadly neutralizing antibodies (bnAbs) being considered for clinical development. Pseudoviruses were constructed using envelope sequences from 218 individuals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!