Introducing a new category of activity cliffs with chemical modifications at multiple sites and rationalizing contributions of individual substitutions.

Bioorg Med Chem

Department of Life Science Informatics, b-it, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany. Electronic address:

Published: August 2019

Activity cliffs (ACs) are formed by structurally similar active compounds with large potency differences. In medicinal chemistry, ACs are of high interest because they reveal structure-activity relationship (SAR) information and SAR determinants. Herein, we introduce a new type of ACs that consist of analog pairs with different substitutions at multiple sites (multi-site ACs; msACs). A systematic search for msACs across different classes of bioactive compounds identified more than 4000 of such ACs, most of which had substitutions at two sites (dual-site ACs; dsACs). A hierarchical analog data structure was designed to analyze contributions of individual substitutions to AC formation. Single substitutions were frequently found to determine potency differences captured by dsACs. Hence, in such cases, there was redundancy of AC information. In instances where both substitutions made significant contributions to dsACs, additive, synergistic, and compensatory effects were observed. Taken together, the results of our analysis revealed the prevalence of single-site ACs (ssACs) in analog series, followed by dsACs, which reveal different ways in which paired substitutions contribute to the formation of ACs and modulate SARs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2019.06.045DOI Listing

Publication Analysis

Top Keywords

activity cliffs
8
multiple sites
8
contributions individual
8
individual substitutions
8
acs
8
potency differences
8
substitutions
7
introducing category
4
category activity
4
cliffs chemical
4

Similar Publications

The importance of peripheral populations in the face of novel environmental change.

Proc Biol Sci

January 2025

Department of Forest and Wildlife Ecology, US Geological Survey, Wisconsin Cooperative Wildlife Research Unit, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA.

Anthropogenically driven environmental change has imposed substantial threats on biodiversity, including the emergence of infectious diseases that have resulted in declines of wildlife globally. In response to pathogen invasion, maintaining diversity within host populations across heterogenous environments is essential to facilitating species persistence. White-nose syndrome is an emerging fungal pathogen that has caused mass mortalities of hibernating bats across North America.

View Article and Find Full Text PDF

Reliable molecular property prediction is essential for various scientific endeavors and industrial applications, such as drug discovery. However, the data scarcity, combined with the highly non-linear causal relationships between physicochemical and biological properties and conventional molecular featurization schemes, complicates the development of robust molecular machine learning models. Self-supervised learning (SSL) has emerged as a popular solution, utilizing large-scale, unannotated molecular data to learn a foundational representation of chemical space that might be advantageous for downstream tasks.

View Article and Find Full Text PDF

A preliminary exploration of establishing a mice model of hypoxic training.

Sci Rep

January 2025

Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.

Altitude training has been widely adopted. This study aimed to establish a mice model to determine the time point for achieving the best endurance at the lowland. C57BL/6 and BALB/c male mice were used to establish a mice model of hypoxic training with normoxic training mice, hypoxic mice, and normoxic mice as controls.

View Article and Find Full Text PDF

We present a case of a 37-year-old gentleman diagnosed with post-infectious Guillain-Barré syndrome (GBS) secondary to a Mycoplasma pneumoniae infection. This case highlights the subclinical presentation of neurological symptoms, often overlooked as a complication of M. pneumoniae infection.

View Article and Find Full Text PDF

The work being presented now combines severe gradient boosting with Shapley values, a thriving merger within the field of explainable artificial intelligence. We also use a genetic algorithm to analyse the HDAC1 inhibitory activity of a broad pool of 1274 molecules experimentally reported for HDAC1 inhibition. We conduct this analysis to ascertain the HDAC1 inhibitory activity of these molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!