The placenta is composed of the amnion, chorionic plate, villous and smooth chorion, decidua basalis, and umbilical cord. The amnion is a readily obtainable source of a large number of cells and cell types, including epithelium, mesenchyme, and endothelium, and is thus an allogeneic resource for regenerative medicine. Endothelial cells are obtained from large arteries and veins in the amniotic membrane as well as the umbilical cord. The amnion-derived cells exhibit transdifferentiation capabilities, including chondrogenesis and cardiomyogenesis, by introduction of transcription factors, in addition to their original and potential phenotypes. The amnion is also a source for production of induced pluripotent stem cells (AM-iPSCs). The AM-iPSCs exhibit stable phenotypes, such as multipotency and immortality, and a unique gene expression pattern. Through the use of amnion-derived cells, as well as other placenta-derived cells, preclinical proof of concept has been achieved in a mouse model of muscular dystrophy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.placenta.2019.06.381DOI Listing

Publication Analysis

Top Keywords

amnion-derived cells
12
regenerative medicine
8
umbilical cord
8
cells
6
cells reliable
4
reliable resource
4
resource next-generation
4
next-generation regenerative
4
medicine placenta
4
placenta composed
4

Similar Publications

Hypoxic culture enhances the antimicrobial activity of amnion-derived mesenchymal stem cells, thereby reducing bacterial load and promoting wound healing in diabetic mice.

Biochem Biophys Res Commun

December 2024

Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan. Electronic address:

Background: Conditioned medium from amnion-derived mesenchymal stem cells (AMSCs) enhances wound healing, a process that is further improved under hypoxic culture conditions. Diabetic foot ulcers are difficult to treat and are frequently complicated by a high rate of bacterial infections, mainly Staphylococcus aureus, which can lead to limb amputation and death. Here, we topically applied conditioned medium from AMSCs cultured under hypoxic conditions to S.

View Article and Find Full Text PDF

Introduction: Spinal cord injury (SCI) leads to severe disabilities and remains a significant social and economic challenge. Despite advances in medical research, there are still no effective treatments for SCI. Human amnion-derived mesenchymal stem cells (hAMSCs) have shown potential due to their anti-inflammatory and neuroprotective effects.

View Article and Find Full Text PDF

Oxidative stress-mediated retinal pigment epithelial (RPE) cell damage is associated with age-related macular degeneration (AMD). ST266 is the biological secretome produced by a novel population of amnion-derived multipotent progenitor cells. Herein, we investigated the effect of ST266 on RPE cell injury induced by hydroquinone (HQ), a cigarette smoke related oxidant, hydrogen peroxide (HO) and all-trans retinal (atRal), a pro-oxidant component of the retinoid cycle.

View Article and Find Full Text PDF

Stem-Cell-Driven Chondrogenesis: Perspectives on Amnion-Derived Cells.

Cells

April 2024

Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy.

Regenerative medicine harnesses stem cells' capacity to restore damaged tissues and organs. In vitro methods employing specific bioactive molecules, such as growth factors, bio-inductive scaffolds, 3D cultures, co-cultures, and mechanical stimuli, steer stem cells toward the desired differentiation pathways, mimicking their natural development. Chondrogenesis presents a challenge for regenerative medicine.

View Article and Find Full Text PDF

Human Amniotic MSC Response in LPS-Stimulated Ascites from Patients with Cirrhosis: FOXO1 Gene and Th17 Activation in Enhanced Antibacterial Activation.

Int J Mol Sci

February 2024

Department for the Treatment and Study of Abdominal Disease and Abdominal Transplantation, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), UPMCI (University of Pittsburgh Medical Center Italy), 90127 Palermo, Italy.

Spontaneous bacterial peritonitis (SBP) is a severe complication in patients with decompensated liver cirrhosis and is commonly treated with broad spectrum antibiotics. However, the rise of antibiotic resistance requires alternative therapeutic strategies. As recently shown, human amnion-derived mesenchymal stem cells (hA-MSCs) are able, in vitro, to promote bacterial clearance and modulate the immune and inflammatory response in SBP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!